Patents by Inventor Stephen M. Howell

Stephen M. Howell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10582982
    Abstract: A multi-purpose measurement tool comprises an elongate beam and a slide. The elongate beam extends from a first end to a second end, and comprises a first fixed jaw, a second fixed jaw, and a track. The first fixed jaw extends from the beam at the first end. The second fixed jaw extends from the beam opposite the first jaw and spaced from the first end. The track extends across the elongate beam through the first end. The slide has a first end extending from the track and a second end extending into the track. The slide has a moveable jaw extending from the slide opposite the first fixed jaw. The slide can also have a front face and a back face, each face with readable measurement indicia thereon.
    Type: Grant
    Filed: March 17, 2016
    Date of Patent: March 10, 2020
    Assignee: Zimmer, Inc.
    Inventors: Michael G. Fisher, Stephen M. Howell
  • Patent number: 10582934
    Abstract: Disclosed herein is a method of creating a customized arthroplasty jig. The method may include: generating two-dimensional MRI images of a patient's joint area to undergo arthroplasty; electronically orienting the two dimensional MRI image slices to account for the patient's joint area being randomly physically oriented in a scanning area of a MRI machine; generating a three-dimensional bone image of at least a portion of a bone of the patient's joint area from the generated two-dimensional MRI images; using the three-dimensional bone image to generate data pertaining to the customized arthroplasty jig, wherein the data includes bone surface information; providing the data to at least one manufacturing device; and employing the bone surface information to cause the at least one manufacturing device to create a surface on the arthroplasty jig configured to matingly receive a surface of the bone.
    Type: Grant
    Filed: November 27, 2007
    Date of Patent: March 10, 2020
    Assignee: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Stephen M. Howell
  • Publication number: 20190287385
    Abstract: According to the present disclosure, devices, systems, and methods for locating, tracking, and conducting communications between care devices and networks of care facilities through local communications hubs.
    Type: Application
    Filed: June 7, 2019
    Publication date: September 19, 2019
    Inventors: Stephen R. Embree, Frederick C. Davidson, Theophile R. Lerebours, Phillip Maloney, Bruno J. Filliat, David M. Girardeau, Christian Saucier, Kelly F. Walton, Joshua P. Lingenfelser, Benjamin E. Howell, Bradley T. Smith, Laura A. Hassey, Stephen N. Moore, Britten J. Pipher
  • Publication number: 20190262075
    Abstract: A method of manufacturing an arthroplasty jig is disclosed herein. The method may include the following: generate a bone model, wherein the bone model includes a three dimensional computer model of at least a portion of a joint surface of a bone of a patient joint to undergo an arthroplasty procedure; generate an implant model, wherein the implant model includes a three dimensional computer model of at least a portion of a joint surface of an arthroplasty implant to be used in the arthroplasty procedure; assess a characteristic associated with the patient joint; generate a modified joint surface of the implant model by modifying at least a portion of a joint surface of the implant model according to the characteristic; and shape match the modified joint surface of the implant model and a corresponding joint surface of the bone model.
    Type: Application
    Filed: January 24, 2019
    Publication date: August 29, 2019
    Applicant: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Charlie W. Chi, Stephen M. Howell
  • Patent number: 10360787
    Abstract: According to the present disclosure, devices, systems, and methods for locating, tracking, and conducting communications between care devices and networks of care facilities through local communications hubs.
    Type: Grant
    Filed: April 26, 2017
    Date of Patent: July 23, 2019
    Assignee: Hill-Rom Services, Inc.
    Inventors: Stephen R. Embree, Frederick C. Davidson, Theophile R. Lerebours, Phillip Maloney, Bruno J. Filliat, David M. Girardeau, Christian Saucier, Kelly F. Walton, Joshua P. Lingenfelser, Benjamin E. Howell, Bradley T. Smith, Laura A. Hassey, Stephen N. Moore, Britten J. Pipher
  • Publication number: 20190046215
    Abstract: Methods and instruments for performing a kinematically-aligned total knee arthroplasty (TKA) are disclosed. Goals of the kinematically-aligned TKA can include restoration of (1) the femoral and tibial joint lines to the patient's natural joint line, (2) the patient's Hip-Knee-Ankle alignment to their constitutional alignment prior to developing osteoarthritis and (3) restoration of the patient's natural soft tissue laxity and envelope. A shim block assembly can be used in resecting the distal medial and lateral condyles to account for cartilage wear on the distal condyles from osteoarthritis. The shim block assembly can include a plurality of shims, and each shim can be attachable to or integral with a reference block. At least one of the plurality of shims can have a medial portion with a thickness different from a thickness of a lateral portion of the shim. The shims need not be joined together as a single medial/lateral component but may be independent of one another.
    Type: Application
    Filed: October 17, 2018
    Publication date: February 14, 2019
    Inventors: Edward R. Yager, Shaun R. Cronin, Stephen M. Howell, David B. Willard
  • Patent number: 10194989
    Abstract: A method of manufacturing an arthroplasty jig is disclosed herein. The method may include the following: generate a bone model, wherein the bone model includes a three dimensional computer model of at least a portion of a joint surface of a bone of a patient joint to undergo an arthroplasty procedure; generate an implant model, wherein the implant model includes a three dimensional computer model of at least a portion of a joint surface of an arthroplasty implant to be used in the arthroplasty procedure; assess a characteristic associated with the patient joint; generate a modified joint surface of the implant model by modifying at least a portion of a joint surface of the implant model according to the characteristic; and shape match the modified joint surface of the implant model and a corresponding joint surface of the bone model.
    Type: Grant
    Filed: April 10, 2017
    Date of Patent: February 5, 2019
    Assignee: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Charlie W. Chi, Stephen M. Howell
  • Publication number: 20180344409
    Abstract: Systems and methods for creating planar cuts on a bone are provided utilizing one or more cutting guides assembled to a plurality of bone pins, where the bone pins are inserted on the bone coincident with one or more virtual pin planes defined relative to one or more of the planar cuts. Alignment guides are also disclosed herein that aid in the creation of pilot holes for receiving a cutting block in a desired position and orientation (POSE). An articulating surgical device actively positions the bone pins coincident with the virtual plane to ensure the cutting guides, when assembled to the pins, aligns one or more guide slots in the desired POSE to create the planar cuts.
    Type: Application
    Filed: November 15, 2016
    Publication date: December 6, 2018
    Inventors: Daniel P. BONNY, Joel ZUHARS, Stephen M. HOWELL, Timothy PACK, Kyle KUZNIK, Babak KIANMAJD
  • Patent number: 10130375
    Abstract: Methods and instruments for performing a kinematically-aligned total knee arthroplasty (TKA) are disclosed. Goals of the kinematically-aligned TKA can include restoration of (1) the femoral and tibial joint lines to the patient's natural joint line, (2) the patient's Hip-Knee-Ankle alignment to their constitutional alignment prior to developing osteoarthritis and (3) restoration of the patient's natural soft tissue laxity and envelope. A shim block assembly can be used in resecting the distal medial and lateral condyles to account for cartilage wear on the distal condyles from osteoarthritis. The shim block assembly can include a plurality of shims, and each shim can be attachable to or integral with a reference block. At least one of the plurality of shims can have a medial portion with a thickness different from a thickness of a lateral portion of the shim. The shims need not be joined together as a single medial/lateral component but may be independent of one another.
    Type: Grant
    Filed: July 27, 2015
    Date of Patent: November 20, 2018
    Assignee: Zimmer, Inc.
    Inventors: Edward R. Yager, Shaun R. Cronin, Stephen M. Howell, David B. Willard
  • Publication number: 20170209221
    Abstract: A method of manufacturing an arthroplasty jig is disclosed herein. The method may include the following: generate a bone model, wherein the bone model includes a three dimensional computer model of at least a portion of a joint surface of a bone of a patient joint to undergo an arthroplasty procedure; generate an implant model, wherein the implant model includes a three dimensional computer model of at least a portion of a joint surface of an arthroplasty implant to be used in the arthroplasty procedure; assess a characteristic associated with the patient joint; generate a modified joint surface of the implant model by modifying at least a portion of a joint surface of the implant model according to the characteristic; and shape match the modified joint surface of the implant model and a corresponding joint surface of the bone model.
    Type: Application
    Filed: April 10, 2017
    Publication date: July 27, 2017
    Applicant: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Charlie W. Chi, Stephen M. Howell
  • Patent number: 9649170
    Abstract: A method of manufacturing an arthroplasty jig is disclosed herein. The method may include the following: generate a bone model, wherein the bone model includes a three dimensional computer model of at least a portion of a joint surface of a bone of a patient joint to undergo an arthroplasty procedure; generate an implant model, wherein the implant model includes a three dimensional computer model of at least a portion of a joint surface of an arthroplasty implant to be used in the arthroplasty procedure; assess a characteristic associated with the patient joint; generate a modified joint surface of the implant model by modifying at least a portion of a joint surface of the implant model according to the characteristic; and shape match the modified joint surface of the implant model and a corresponding joint surface of the bone model.
    Type: Grant
    Filed: August 28, 2013
    Date of Patent: May 16, 2017
    Assignee: Howmedica Osteonics Corporation
    Inventors: Ilwhan Park, Charlie W. Chi, Stephen M. Howell
  • Publication number: 20160278873
    Abstract: A multi-purpose measurement tool comprises an elongate beam and a slide. The elongate beam extends from a first end to a second end, and comprises a first fixed jaw, a second fixed jaw, and a track. The first fixed jaw extends from the beam at the first end. The second fixed jaw extends from the beam opposite the first jaw and spaced from the first end. The track extends across the elongate beam through the first end. The slide has a first end extending from the track and a second end extending into the track. The slide has a moveable jaw extending from the slide opposite the first fixed jaw.
    Type: Application
    Filed: March 17, 2016
    Publication date: September 29, 2016
    Inventors: Michael G. Fisher, Stephen M. Howell
  • Publication number: 20160030053
    Abstract: Methods and instruments for performing a kinematically-aligned total knee arthroplasty (TKA) are disclosed. Goals of the kinematically-aligned TKA can include restoration of (1) the femoral and tibial joint lines to the patient's natural joint line, (2) the patient's Hip-Knee-Ankle alignment to their constitutional alignment prior to developing osteoarthritis and (3) restoration of the patient's natural soft tissue laxity and envelope. A shim block assembly can be used in resecting the distal medial and lateral condyles to account for cartilage wear on the distal condyles from osteoarthritis. The shim block assembly can include a plurality of shims, and each shim can be attachable to or integral with a reference block. At least one of the plurality of shims can have a medial portion with a thickness different from a thickness of a lateral portion of the shim. The shims need not be joined together as a single medial/lateral component but may be independent of one another.
    Type: Application
    Filed: July 27, 2015
    Publication date: February 4, 2016
    Inventors: Edward R. Yager, Shaun R. Cronin, Stephen M. Howell, David B. Willard
  • Publication number: 20150320545
    Abstract: Methods for fixation of a soft tissue graft in a bone including: forming in the bone a tunnel defining an entrance opening and an exit opening at opposite ends of the tunnel, the tunnel including an anterior wall surface and a posterior wall surface opposite to the anterior wall surface; positioning the soft tissue graft within the tunnel such that the soft tissue graft extends through both the entrance opening and the exit opening of the tunnel; inserting a graft fixation apparatus into the tunnel and driving spikes of the graft fixation apparatus into the posterior wall surface to mount the graft fixation apparatus to the posterior wall surface of the tunnel such that the graft fixation apparatus is anterior to the posterior wall surface and is not recessed beneath the posterior wall surface; and securing the soft tissue graft inside the tunnel with the graft fixation apparatus.
    Type: Application
    Filed: April 17, 2015
    Publication date: November 12, 2015
    Inventors: James BOUCHER, Stephen M. Howell, James Marcinek, Troy M. Walters
  • Patent number: 9017336
    Abstract: Arthroplasty jigs, arthroplasty jig blanks, and related methods and devices are disclosed. Some variations of the methods comprise forming an arthroplasty jig from a near-shape arthroplasty jig blank, where the near-shape arthroplasty jig blank has at least one feature specific to a target site to be matched by the arthroplasty jig. Certain of the methods comprise forming an arthroplasty jig having a first configuration from a near-shape arthroplasty jig blank having a second configuration approximating the first configuration. Some of the methods comprise forming a near-shape arthroplasty jig blank, where the near-shape arthroplasty jig blank is configured to be formed into an arthroplasty jig, and the near-shape arthroplasty jig blank has at least one feature specific to a target site to be matched by the arthroplasty jig.
    Type: Grant
    Filed: January 19, 2007
    Date of Patent: April 28, 2015
    Assignee: OtisMed Corporation
    Inventors: Ilwhan Park, Stephen M. Howell, Charlie W. Chi
  • Patent number: 9011534
    Abstract: Methods for fixation of a soft tissue graft in a bone including: forming in the bone a tunnel defining an entrance opening and an exit opening at opposite ends of the tunnel, the tunnel including an anterior wall surface and a posterior wall surface opposite to the anterior wall surface; positioning the soft tissue graft within the tunnel such that the soft tissue graft extends through both the entrance opening and the exit opening of the tunnel; inserting a graft fixation apparatus into the tunnel and driving spikes of the graft fixation apparatus into the posterior wall surface to mount the graft fixation apparatus to the posterior wall surface of the tunnel such that the graft fixation apparatus is anterior to the posterior wall surface and is not recessed beneath the posterior wall surface; and securing the soft tissue graft inside the tunnel with the graft fixation apparatus.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: April 21, 2015
    Assignee: Biomet Sports Medicine, LLC
    Inventors: James A. Boucher, Stephen M. Howell, James Marcinek, Troy M. Walters
  • Patent number: 8968320
    Abstract: Disclosed herein is a method of computer generating a three-dimensional surface model of an arthroplasty target region of a bone forming a joint. The method may include: generating two-dimensional images of at least a portion of the bone; generating an open-loop contour line along the arthroplasty target region in at least some of the two-dimensional images; and generating the three-dimensional model of the arthroplasty target region from the open-loop contour lines.
    Type: Grant
    Filed: June 5, 2012
    Date of Patent: March 3, 2015
    Assignee: OtisMed Corporation
    Inventors: Ilwhan Park, Stephen M. Howell
  • Patent number: 8647385
    Abstract: An apparatus and method for fixation of a soft tissue graft. The apparatus may include a member having a first surface and a second surface. Each of the surfaces extend a distance relative to one another. A member is operable to resist movement of the apparatus relative to an anatomical portion. An interference member may be provided to fixedly associate the apparatus with the anatomical structure.
    Type: Grant
    Filed: July 16, 2012
    Date of Patent: February 11, 2014
    Assignee: Biomet Sports Medicine, LLC
    Inventors: James Boucher, Stephen M. Howell, James Marcinek
  • Publication number: 20130345845
    Abstract: A method of manufacturing an arthroplasty jig is disclosed herein. The method may include the following: generate a bone model, wherein the bone model includes a three dimensional computer model of at least a portion of a joint surface of a bone of a patient joint to undergo an arthroplasty procedure; generate an implant model, wherein the implant model includes a three dimensional computer model of at least a portion of a joint surface of an arthroplasty implant to be used in the arthroplasty procedure; assess a characteristic associated with the patient joint; generate a modified joint surface of the implant model by modifying at least a portion of a joint surface of the implant model according to the characteristic; and shape match the modified joint surface of the implant model and a corresponding joint surface of the bone model.
    Type: Application
    Filed: August 28, 2013
    Publication date: December 26, 2013
    Applicant: OtisMed Corporation
    Inventors: Ilwhan Park, Charlie W. Chi, Stephen M. Howell
  • Patent number: 8545509
    Abstract: A method of manufacturing an arthroplasty jig is disclosed herein. The method may include the following: generate a bone model, wherein the bone model includes a three dimensional computer model of at least a portion of a joint surface of a bone of a patient joint to undergo an arthroplasty procedure; generate an implant model, wherein the implant model includes a three dimensional computer model of at least a portion of a joint surface of an arthroplasty implant to be used in the arthroplasty procedure; assess a characteristic associated with the patient joint; generate a modified joint surface of the implant model by modifying at least a portion of a joint surface of the implant model according to the characteristic; and shape match the modified joint surface of the implant model and a corresponding joint surface of the bone model.
    Type: Grant
    Filed: September 21, 2009
    Date of Patent: October 1, 2013
    Assignee: OtisMed Corporation
    Inventors: Ilwhan Park, Charlie W. Chi, Stephen M. Howell