Patents by Inventor Stephen M. Leuck

Stephen M. Leuck has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220346824
    Abstract: A method of fabricating an ultrasonic medical device is presented. The method includes machining a surgical tool from a flat metal stock, contacting a face of a first transducer with a first face of the surgical tool, and contacting a face of a second transducer with an opposing face of the surgical tool opposite the first transducer. The first and second transducers are configured to operate in a D31 mode with respect to the longitudinal portion of the surgical tool. Upon activation, the first transducer and the second transducer are configured to induce a standing wave in the surgical tool and the induced standing wave comprises a node at a node location in the surgical tool and an antinode at an antinode location in the surgical tool.
    Type: Application
    Filed: March 1, 2022
    Publication date: November 3, 2022
    Inventors: Jeffrey D. Messerly, Brian D. Black, William A. Olson, Frederick L. Estera, William E. Clem, Jerome R. Morgan, Jeffrey L. Aldridge, Stephen M. Leuck
  • Patent number: 11484333
    Abstract: An apparatus comprises a body assembly, a shaft, an acoustic waveguide, an articulation section, an end effector, and an articulation drive assembly. The shaft extends distally from the body assembly and defines a longitudinal axis. The acoustic waveguide comprises a flexible portion. The articulation section is coupled with the shaft. A portion of the articulation section encompasses the flexible portion of the waveguide. The articulation section comprises a plurality of body portions aligned along the longitudinal axis and a flexible locking member. The flexible locking member is operable to secure the body portions in relation to each other and in relation to the shaft. The end effector comprises an ultrasonic blade in acoustic communication with the waveguide. The articulation drive assembly is operable to drive articulation of the articulation section to thereby deflect the end effector from the longitudinal axis.
    Type: Grant
    Filed: January 10, 2019
    Date of Patent: November 1, 2022
    Assignee: Cilag GmbH International
    Inventors: Barry C. Worrell, Benjamin J. Danziger, Benjamin D. Dickerson, Brian D. Black, Cara L. Shapiro, Charles J. Scheib, Craig N. Faller, Daniel J. Mumaw, David J. Cagle, David T. Martin, David A. Monroe, Disha V. Labhasetwar, Foster B. Stulen, Frederick L. Estera, Geoffrey S. Strobl, Gregory W. Johnson, Jacob S. Gee, Jason R. Sullivan, Jeffrey D. Messerly, Jeffrey S. Swayze, John A. Hibner, John B. Schulte, Joseph E. Hollo, Kristen G. Denzinger, Kristen L. D'Uva, Matthew C. Miller, Michael R. Lamping, Richard W. Timm, Rudolph H. Nobis, Ryan M. Asher, Stephen M. Leuck, Tylor C. Muhlenkamp, William B. Weisenburgh, II, William A. Olson
  • Publication number: 20220323095
    Abstract: A generator, ultrasonic device, and method for controlling a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency.
    Type: Application
    Filed: February 9, 2022
    Publication date: October 13, 2022
    Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Kristen G. Denzinger, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee
  • Patent number: 11464535
    Abstract: A surgical instrument is disclosed. The surgical instrument comprises an end effector comprising an ultrasonic blade and a clamp arm. The clamp arm is movable relative to the ultrasonic blade to transition the end effector between an open configuration and a closed configuration to clamp tissue between the ultrasonic blade and the clamp arm. The surgical instrument further comprises an ultrasonic transducer configured to generate an ultrasonic energy output and a waveguide configured to transmit the ultrasonic energy output to the ultrasonic blade. The surgical instrument further comprises a control circuit, configured to detect an immersion of the end effector in a liquid and compensate for heat flux lost due to the immersion of the end effector in the liquid.
    Type: Grant
    Filed: August 28, 2018
    Date of Patent: October 11, 2022
    Assignee: Cilag GmbH International
    Inventors: Frederick E. Shelton, IV, Jeffrey D. Messerly, Jason L. Harris, David C. Yates, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson
  • Patent number: 11464532
    Abstract: Various aspects of a generator, ultrasonic device, and method for estimating and controlling a state of an end effector of an ultrasonic device are disclosed. The ultrasonic device includes an electromechanical ultrasonic system defined by a predetermined resonant frequency, including an ultrasonic transducer coupled to an ultrasonic blade. A control circuit measures a complex impedance of an ultrasonic transducer, wherein the complex impedance is defined as Z g ? ( t ) = V g ? ( t ) I g ? ( t ) . The control circuit receives a complex impedance measurement data point and compares the complex impedance measurement data point to a data point in a reference complex impedance characteristic pattern. The control circuit then classifies the complex impedance measurement data point based on a result of the comparison analysis and assigns a state or condition of the end effector based on the result of the comparison analysis.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: October 11, 2022
    Assignee: Cilag GmbH International
    Inventors: Cameron R. Nott, Foster B. Stulen, Fergus P. Quigley, John E. Brady, Gregory A. Trees, Amrita S. Sawhney, Patrick J. Scoggins, Kristen G. Denzinger, Craig N. Faller, Madeleine C. Jayme, Alexander R. Cuti, Matthew S. Schneider, Chad P. Boudreaux, Brian D. Black, Maxwell T. Rockman, Gregory D. Bishop, Eric M. Roberson, Stephen M. Leuck, James M. Wilson
  • Patent number: 11464533
    Abstract: An ultrasonic instrument includes a housing, an ultrasonic transducer support by the housing, and an integrated usage indicator. The housing is configured to removably connect to a shaft assembly. The ultrasonic transducer is configured to be acoustically connected to a waveguide and operated a predetermined number of use cycles. The integrated usage indicator is operatively connected to the housing and includes a used state indicator. The used state indicator is configured to indicate to a clinician in a used state when the ultrasonic transducer has been operated at least the predetermined number of use cycles for limiting usage of the ultrasonic transducer to the predetermined number of use cycles.
    Type: Grant
    Filed: November 26, 2019
    Date of Patent: October 11, 2022
    Assignee: Cilag GmbH International
    Inventors: Ryan M. Asher, Brian D. Black, Chad P. Boudreaux, Nathan Cummings, William D. Dannaher, Craig T. Davis, Glenn W. Ellison, Frederick L. Estera, Jacob S. Gee, Geni Giannotti, Timothy S. Holland, Kevin L. Houser, Gregory W. Johnson, Amy M. Krumm, Jason R. Lesko, Stephen M. Leuck, Ion V. Nicolaescu, Candice Otrembiak, Amelia A. Pierce, Eric Roberson, Shan Wan
  • Publication number: 20220313342
    Abstract: A modular energy system is disclosed including a header module including an enclosure and a display including a coupler. The enclosure defines a recess. The recess includes a first guidewall and a second guidewall. The coupler is removably positionable in the recess. The coupler includes a first sidewall and a second sidewall. The first guidewall is configured to guide the first sidewall as the coupler moves through the recess. The second guidewall is configured to guide the second sidewall as the coupler moves through the recess.
    Type: Application
    Filed: March 30, 2021
    Publication date: October 6, 2022
    Inventors: Stephen M. Leuck, Brendan J. Oberkircher, Ryan M. Asher, John A. Weed, III, William B. Weisenburgh, II, Stephen D. Geresy
  • Publication number: 20220322523
    Abstract: Disclosed is a method of assembling a backplane connector subassembly for a module of a modular energy system. The backplane connector subassembly physically and electrically connects at least two modules stacked on top of one another. The method includes providing a back panel defining an inner surface, attaching a first support member to the inner surface of the back panel, attaching a second support member to the inner surface of the back panel, attaching the upstream connector to the back panel by sliding a first mating hole defined in the upstream connector onto the first support member, and attaching the downstream connector to the back panel by a sliding a second mating hole defined in the downstream connector onto the second support member. The first support member is configured to support an upstream connector. The second support member is configured to support a downstream connector.
    Type: Application
    Filed: March 30, 2021
    Publication date: October 6, 2022
    Inventors: Madeleine C. Jayme, Ryan M. Asher, William B. Weisenburgh, II, Joshua E. Henderson, Stephen D. Geresy, Stephen M. Leuck, John A. Weed, III, Brendan J. Oberkircher, Kristen G. Denzinger
  • Publication number: 20220313341
    Abstract: Systems, methods and devices for surgical procedurelization via a modular energy system are disclosed herein. In various aspects, the systems, methods and devices include an energy module, a header module communicably coupled to the energy module, and a display screen capable of rendering a graphical user interface (GUI). The GUI may be configured to display a plurality of steps that correspond with actions performed by a user while operating the modular energy system. In some aspects, the steps displayed are steps of a predetermined procedural checklist corresponding with a mental model followed by the user while performing a surgical procedure. In some aspects, the steps displayed are steps of an output verification process.
    Type: Application
    Filed: March 30, 2021
    Publication date: October 6, 2022
    Inventors: Eitan T. Wiener, Brendan J. Oberkircher, Megan A. Broderick, Ryan M. Asher, Leonardo N. Rossoni, Amanda R. Stautberg, Jacob S. Childs, Molly MF Petre, Lucas B. Elmer, Stephen M. Leuck, Kristen G. Denzinger, James M. Vachon
  • Publication number: 20220313357
    Abstract: A port module removably coupleable to an energy module of a module energy system is disclosed. The port module includes a light pipe and a receptacle defined by the light pipe. The receptacle is configured to receive a plug of an electrosurgical instrument therein. A seal is defined between the light pipe and the receptacle.
    Type: Application
    Filed: March 30, 2021
    Publication date: October 6, 2022
    Inventors: Stephen D. Geresy, Stephen M. Leuck, Madeleine C. Jayme, Ryan M. Asher, John A. Weed, III, Kristen G. Denzinger
  • Patent number: 11399858
    Abstract: An ultrasonic device may include an electromechanical ultrasonic system having a resonant frequency, the system including a transducer coupled to an ultrasonic blade. A method of driving the blade may include determining a tissue type contacting the blade, setting current delivered to the transducer to achieve a desired blade temperature, and setting a desired period during which the desired temperature is applied to the tissue. The tissue type may be determined by measuring an impedance of the transducer, comparing an impedance measurement data point to a reference data point, and classifying the impedance measurement data point based on a result of the comparison. Alternatively, the tissue type may be determined by applying a drive signal to the transducer, sweeping the frequency of the drive signal from below to above a resonance of the ultrasonic system, measuring and recording impedance/admittance variables, and comparing the measured variables to reference variables.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: August 2, 2022
    Assignee: Cilag GmbH International
    Inventors: Amrita S. Sawhney, Eric M. Roberson, Stephen M. Leuck, Brian D. Black
  • Patent number: 11350959
    Abstract: A method of fabricating an ultrasonic medical device is presented. The method includes machining a surgical tool from a flat metal stock, contacting a face of a first transducer with a first face of the surgical tool, and contacting a face of a second transducer with an opposing face of the surgical tool opposite the first transducer. The first and second transducers are configured to operate in a D31 mode with respect to the longitudinal portion of the surgical tool. Upon activation, the first transducer and the second transducer are configured to induce a standing wave in the surgical tool and the induced standing wave comprises a node at a node location in the surgical tool and an antinode at an antinode location in the surgical tool.
    Type: Grant
    Filed: August 17, 2017
    Date of Patent: June 7, 2022
    Assignee: Cilag GmbH International
    Inventors: Jeffrey D. Messerly, Brian D. Black, William A. Olson, Frederick Estera, William E. Clem, Jerome R. Morgan, Jeffrey L. Aldridge, Stephen M. Leuck
  • Patent number: 11350960
    Abstract: A surgical instrument includes a reusable assembly having an inner tube and an ultrasonic blade positioned within the inner tube. The inner tube includes at least one opening to receive a sterilization fluid therethrough for sterilizing the ultrasonic blade within the inner tube. The surgical instrument further includes a sterilization detection system to determine whether the reusable assembly has been sterilized during a sterilization cycle. A seal is selectively couplable with the at least one opening of the inner tube to fluidly seal the at least one opening for inhibiting bodily fluid from entering the at least one opening during a surgical procedure.
    Type: Grant
    Filed: April 30, 2019
    Date of Patent: June 7, 2022
    Assignee: Cilag GmbH International
    Inventors: Stephen M. Leuck, Ellen Burkart, Diana M. Castillo Sanchez, Andrew W. Carroll, Sean P. Conlon, Rafael J. Ruiz Ortiz, Demetrius N. Harris, Patrick J. Minnelli
  • Patent number: 11304741
    Abstract: A surgical system includes a surgical instrument having a body, a shaft extending distally from the body, an ultrasonic transducer supported by the body, and an end effector at a distal end of the shaft. The end effector includes an ultrasonic blade configured to be driven by the ultrasonic transducer with ultrasonic energy, and an RF electrode operable to seal tissue with RF energy. A generator is operatively coupled with the surgical instrument and is operable to generate a combined drive signal having an ultrasonic energy component and an RF energy component. Filter circuitry arranged externally of the body of the surgical instrument is operable to convert the combined drive signal to an ultrasonic drive signal configured to energize the ultrasonic transducer to drive the ultrasonic blade with ultrasonic energy, and an RF drive signal configured to energize the RF electrode with RF energy sufficient to seal tissue.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: April 19, 2022
    Assignee: Cilag GmbH International
    Inventors: Stephen M. Leuck, Eitan T. Wiener
  • Patent number: 11259830
    Abstract: A generator, ultrasonic device, and method for controlling a temperature of an ultrasonic blade are disclosed. A control circuit coupled to a memory determines an actual resonant frequency of an ultrasonic electromechanical system comprising an ultrasonic transducer coupled to an ultrasonic blade by an ultrasonic waveguide. The actual resonant frequency is correlated to an actual temperature of the ultrasonic blade. The control circuit retrieves from the memory a reference resonant frequency of the ultrasonic electromechanical system. The reference resonant frequency is correlated to a reference temperature of the ultrasonic blade. The control circuit then infers the temperature of the ultrasonic blade based on the difference between the actual resonant frequency and the reference resonant frequency.
    Type: Grant
    Filed: September 27, 2018
    Date of Patent: March 1, 2022
    Assignee: Cilag GmbH International
    Inventors: Cameron R. Nott, Fergus P. Quigley, Amrita S. Sawhney, Stephen M. Leuck, Brian D. Black, Eric M. Roberson, Kristen G. Denzinger, Patrick J. Scoggins, Craig N. Faller, Madeleine C. Jayme, Jacob S. Gee
  • Patent number: 11234750
    Abstract: A surgical instrument includes a shaft, an ultrasonic transducer, a waveguide acoustically coupled with the ultrasonic transducer and extending distally through the shaft, and an end effector arranged at a distal end of the shaft. The end effector includes an ultrasonic blade acoustically coupled with the waveguide, a clamp arm movable relative to the ultrasonic blade for clamping tissue, and an RF electrode operable to seal tissue with RF energy. The ultrasonic transducer is operable to drive the waveguide and the ultrasonic blade with ultrasonic energy. The surgical instrument further includes an ultrasonic electrical circuit operable to energize the ultrasonic transducer, and an RF electrical circuit operable to deliver RF energy to the RF electrode. A return path of the ultrasonic electrical circuit and a return path of the RF electrical circuit pass through a shared electrically conductive element.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: February 1, 2022
    Assignee: Cilag GmbH International
    Inventors: Stephen M. Leuck, Eitan T. Wiener
  • Publication number: 20210353350
    Abstract: A surgical instrument includes a shaft, an ultrasonic transducer, a waveguide acoustically coupled with the ultrasonic transducer and extending distally through the shaft, and an end effector arranged at a distal end of the shaft. The end effector includes an ultrasonic blade acoustically coupled with the waveguide, a clamp arm movable relative to the ultrasonic blade for clamping tissue, and an RF electrode operable to seal tissue with RF energy. The ultrasonic transducer is operable to drive the waveguide and the ultrasonic blade with ultrasonic energy. The surgical instrument further includes an ultrasonic electrical circuit operable to energize the ultrasonic transducer, and an RF electrical circuit operable to deliver RF energy to the RF electrode. A return path of the ultrasonic electrical circuit and a return path of the RF electrical circuit pass through a shared electrically conductive element.
    Type: Application
    Filed: June 3, 2021
    Publication date: November 18, 2021
    Inventors: Stephen M. Leuck, Eitan T. Wiener
  • Patent number: 11129661
    Abstract: A surgical system includes a surgical instrument having a body, an ultrasonic transducer, a shaft extending distally from the body, and an end effector at a distal end of the shaft and being operable to treat tissue with ultrasonic energy. An accessory device is configured to operatively couple the surgical instrument with a generator operable to power the surgical instrument to provide ultrasonic energy. A primary EEPROM is provided within the instrument body and is operable to track usage of the surgical instrument. The system further includes at least one of: an accessory EEPROM integrated into the accessory device and being operable to track usage of the accessory device; a transducer EEPROM integrated into the ultrasonic transducer and being operable to track usage of the ultrasonic transducer; or an ASIC integrated into the accessory device and being operable to communicate with the generator regarding a state of the surgical instrument.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: September 28, 2021
    Assignee: Cilag GmbH International
    Inventors: Stephen M. Leuck, Eitan T. Wiener
  • Publication number: 20210259725
    Abstract: An ultrasonic surgical instrument and method of assembly with a predetermined alignment includes first and second modular assemblies and an electrical lockout. The first modular assembly includes at least a portion of an end effector configured to manipulate a tissue. The second modular assembly includes a transducer power circuit and an activation switch electrically connected to the transducer power circuit. The electrical lockout is electrically connected to the transducer power circuit and configured to inhibit the activation switch from powering the ultrasonic transducer with the first and second modular assemblies misaligned from the predetermined alignment such that the first and second modular assemblies are in a locked-out state. The electrical lockout is further configured to allow the activation switch to power the ultrasonic transducer with the first and second modular assemblies in the predetermined alignment such that the first and second modular assemblies are in an operational state.
    Type: Application
    Filed: May 7, 2021
    Publication date: August 26, 2021
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Alexander R. Cuti, Demetrius N. Harris, Carl J. Draginoff, JR., Ellen Burkart, Geni M. Giannotti, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Stephen M. Leuck, Cameron D. McLain, Ion V. Nicolaescu, Candice Otrembiak, Amrita S. Sawhney, Aaron C. Voegele, Grace E. Brooks, Fajian Zhang
  • Patent number: 11076881
    Abstract: An ultrasonic surgical instrument and method of assembly with a predetermined alignment includes first and second modular assemblies and an electrical lockout. The first modular assembly includes at least a portion of an end effector configured to manipulate a tissue. The second modular assembly includes a transducer power circuit and an activation switch electrically connected to the transducer power circuit. The electrical lockout is electrically connected to the transducer power circuit and configured to inhibit the activation switch from powering the ultrasonic transducer with the first and second modular assemblies misaligned from the predetermined alignment such that the first and second modular assemblies are in a locked-out state. The electrical lockout is further configured to allow the activation switch to power the ultrasonic transducer with the first and second modular assemblies in the predetermined alignment such that the first and second modular assemblies are in an operational state.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: August 3, 2021
    Assignee: Cilag GmbH International
    Inventors: Ryan M. Asher, Brian D. Black, John E. Brady, Alexander R. Cuti, Demetrius N. Harris, Carl J. Draginoff, Jr., Ellen Burkart, Geni M. Giannotti, Andrew Kolpitcke, Amy M. Krumm, Matthew T. Kuhn, Stephen M. Leuck, Cameron D. McLain, Ion V. Nicolaescu, Candice Otrembiak, Amrita S. Sawhney, Aaron C. Voegele, Grace E. Waters, Fajian Zhang