Patents by Inventor Stephen M. Liebold

Stephen M. Liebold has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160228972
    Abstract: A connector component (102) is provided for assembly into a material processing torch head. The connector component (102) comprises a generally cylindrical body (104) that includes a proximal end (106) and a distal end (108) defining a longitudinal axis. At least two thread regions (112) are disposed at a radial location on a surface of the body near the proximal end. Each thread region includes at least one thread (114) disposed on the surface of the body. In addition, at least two non-thread regions (116) are oriented longitudinally at a radial location on the surface of the body (104).
    Type: Application
    Filed: September 9, 2014
    Publication date: August 11, 2016
    Inventors: Harshawardhan Jogdand, Stephen M. Liebold, Nicholas A. Sanders
  • Patent number: 8981252
    Abstract: In some aspects, a retaining cap for a plasma arc torch can include a shell having an exterior surface that defines, at least in part, a first liquid coolant channel, a liner circumferentially disposed within the shell and having an interior surface that defines, at least in part, a second liquid coolant channel, and a gas flow channel defined at least in part by and located between the shell and the liner.
    Type: Grant
    Filed: August 7, 2012
    Date of Patent: March 17, 2015
    Assignee: Hypertherm, Inc.
    Inventors: Stephen M. Liebold, Jon W. Lindsay, Brian J. Currier
  • Publication number: 20150027998
    Abstract: The invention features methods and apparatuses for establishing operational settings of a plasma arc cutting system. A plasma power supply includes a user selectable control. The user selectable control enables selection of a single cutting persona that establishes at least a current, a gas pressure or gas flow rate, and an operational mode of the plasma arc cutting system.
    Type: Application
    Filed: July 24, 2013
    Publication date: January 29, 2015
    Applicant: Hypertherm, Inc.
    Inventors: Erik Brine, Jesse A. Roberts, Junsong Mao, Michael Hoffa, Clayton Gould, Peter Twarog, E. Michael Shipulski, Stephen M. Liebold, Brett Andrew Hansen
  • Publication number: 20150028003
    Abstract: A shield for a plasma arc torch is configured to protect consumable components of the plasma arc torch from splattering molten metal. The shield includes a generally conical unitary body defining (i) an interior surface to form a gas flow path with an outer surface of an adjacent nozzle of the plasma arc torch, and (ii) an exterior surface. The body includes (i) a distal first portion defining an exit orifice; and (ii) a proximal second portion formed of a flange sharing a common surface with the distal first portion. The shield also includes a seal assembly disposed on the common surface to retain the liquid coolant flow along the proximal second portion.
    Type: Application
    Filed: September 25, 2014
    Publication date: January 29, 2015
    Inventors: Stephen M. Liebold, Jon W. Lindsay
  • Patent number: 8866038
    Abstract: A component for a plasma arc torch includes a body portion, a tapered surface on the body portion, the tapered surface including a compressible member that provides a disengagement force relative to the body portion, and an axially disposed surface on the body portion for coupling a mating surface on an adjacent structure of the torch. The component can be a nozzle and/or an electrode.
    Type: Grant
    Filed: January 23, 2007
    Date of Patent: October 21, 2014
    Assignee: Hypertherm, Inc.
    Inventors: Jon W. Lindsay, Brent R. Bartlett, Aaron D. Brandt, Zheng Duan, Stephen M. Liebold
  • Patent number: 8809728
    Abstract: A method and apparatus for controlling a gas supply to a plasma arc torch uses a proportional control solenoid valve positioned adjacent the torch to manipulate the gas flow to the torch, thereby extending electrode life during arc transfer and shutdown. Swirl ring design can be simplified and gas supply and distribution systems become less complicated. The invention also allows manipulation of shield gas flow to reduce divot formation when making interior cuts. The system can be controlled with a digital signal processor utilizing a feedback loop from a sensor.
    Type: Grant
    Filed: September 7, 2007
    Date of Patent: August 19, 2014
    Assignee: Hypertherm, Inc.
    Inventors: Aaron D. Brandt, Christopher S. Passage, Shane M. Selmer, Girish R. Kamath, Guy T. Best, Stephen M. Liebold, Jon W. Lindsay, Zheng Duan
  • Publication number: 20140069895
    Abstract: The invention features methods and apparatuses for establishing operational settings of a plasma arc cutting system automatically using replaceable cartridges. A replaceable cartridge for use with a plasma arc cutting system includes a housing, a connection mechanism for coupling the housing to a plasma arc torch, an arc constrictor connected to the housing, an arc emitter connected to the housing, and an identification mechanism disposed relative to the housing and configured to communicate information to a reader of the plasma arc cutting system and automatically set at least one operating parameter of the plasma arc cutting system.
    Type: Application
    Filed: November 13, 2013
    Publication date: March 13, 2014
    Inventors: Erik Brine, Jesse A. Roberts, Junsong Mao, Michael Hoffa, Clayton Gould, Peter J. Twarog, E. Michael Shipulski, Stephen M. Liebold, Brett A. Hansen
  • Patent number: 8541710
    Abstract: A method and apparatus for controlling a gas supply to a plasma arc torch uses a proportional control solenoid valve positioned adjacent the torch to manipulate the gas flow to the torch, thereby extending electrode life during arc transfer and shutdown. Swirl ring design can be simplified and gas supply and distribution systems become less complicated. The invention also allows manipulation of shield gas flow to reduce divot formation when making interior cuts. The system can be controlled with a digital signal processor utilizing a feedback loop from a sensor.
    Type: Grant
    Filed: February 29, 2008
    Date of Patent: September 24, 2013
    Assignee: Hypertherm, Inc.
    Inventors: Aaron D. Brandt, Christopher S. Passage, Shane M. Selmer, Girish R. Kamath, Guy T. Best, Stephen M. Liebold, Jon W. Lindsay, Zheng Duan
  • Patent number: 8395077
    Abstract: Plasma arc torches described herein include a torch tip with an improved nozzle that provides angular shield flow injection. In particular, the nozzle provides angular/conical impingement of a fluid (e.g., a shield gas) on an ionized plasma gas flowing through a plasma arc torch. Some of the torch tips described herein include a nozzle with a conical external shape combined with a shield with complementing internal geometry to form the angular fluid flow. As a result, a plasma arc torch including the improved nozzle have the benefits of a stabilized ionized plasma gas flow together with enhanced nozzle cooling and protection from reflecting slag during torch use.
    Type: Grant
    Filed: November 5, 2010
    Date of Patent: March 12, 2013
    Assignee: Hypertherm, Inc.
    Inventors: Zheng Duan, Stephen M. Liebold, Aaron D. Brandt
  • Patent number: 8389887
    Abstract: A shield for a plasma arc torch that pierces and cuts a metallic workpiece producing a splattering of molten metal directed at the torch, the shield protecting consumable components of the plasma arc torch from the splattering molten metal. The shield can include a body, a first surface of the body configured to be contact-cooled by a gas flow, a second surface of the body configured to be contact-cooled by a liquid flow, and a seal assembly configured to be secured to the body and disposed relative to the second surface configured to retain the liquid flow contact-cooling the second surface.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: March 5, 2013
    Assignee: Hypertherm, Inc.
    Inventors: Stephen M. Liebold, Jon W. Lindsay, Brian J. Currier
  • Publication number: 20130026141
    Abstract: In some aspects, a retaining cap for a plasma arc torch can include a shell having an exterior surface that defines, at least in part, a first liquid coolant channel, a liner circumferentially disposed within the shell and having an interior surface that defines, at least in part, a second liquid coolant channel, and a gas flow channel defined at least in part by and located between the shell and the liner.
    Type: Application
    Filed: August 7, 2012
    Publication date: January 31, 2013
    Applicant: Hypertherm, Inc.
    Inventors: Stephen M. Liebold, Jon W. Lindsay, Brian J. Currier
  • Patent number: 8338740
    Abstract: A nozzle for a plasma torch can include a body that has an inner surface, an outer surface, a proximal end, and an exit orifice at a distal end. The nozzle can also include a liner surrounded by the inner surface of the body. The liner can include a proximal end and an exit orifice at a distal end adjacent the exit orifice of the body. The nozzle can include at least one vent passage formed in the body. The vent passage can have an inlet formed in the inner surface of the body and an outlet formed in the outer surface of the body. The vent passage can be disposed between the proximal end of the body and the proximal end of the liner. The plasma arc torch can include a configuration that allows for increased electrode life and nozzle life for a vented high current plasma process.
    Type: Grant
    Filed: September 30, 2008
    Date of Patent: December 25, 2012
    Assignee: Hypertherm, Inc.
    Inventors: Stephen M. Liebold, Brian J. Currier
  • Patent number: 8212173
    Abstract: A shield for a plasma arc torch that pierces and cuts a metallic workpiece producing a splattering of molten metal directed at the torch, the shield protecting consumable components of the plasma arc torch from the splattering molten metal. The shield can include a body, a first surface of the body configured to be contact-cooled by a gas flow, a second surface of the body configured to be contact-cooled by a liquid flow, and a seal assembly configured to be secured to the body and disposed relative to the second surface configured to retain the liquid flow contact-cooling the second surface.
    Type: Grant
    Filed: March 12, 2008
    Date of Patent: July 3, 2012
    Assignee: Hypertherm, Inc.
    Inventors: Stephen M. Liebold, Jon W. Lindsay
  • Publication number: 20110062124
    Abstract: Plasma arc torches described herein include a torch tip with an improved nozzle that provides angular shield flow injection. In particular, the nozzle provides angular/conical impingement of a fluid (e.g., a shield gas) on an ionized plasma gas flowing through a plasma arc torch. Some of the torch tips described herein include a nozzle with a conical external shape combined with a shield with complementing internal geometry to form the angular fluid flow. As a result, a plasma arc torch including the improved nozzle have the benefits of a stabilized ionized plasma gas flow together with enhanced nozzle cooling and protection from reflecting slag during torch use.
    Type: Application
    Filed: November 5, 2010
    Publication date: March 17, 2011
    Applicant: Hypertherm, Inc.
    Inventors: Zheng Duan, Stephen M. Liebold, Aaron D. Brandt
  • Patent number: 7829816
    Abstract: Plasma arc torches described herein include a torch tip with an improved nozzle that provides angular shield flow injection. In particular, the nozzle provides angular/conical impingement of a fluid (e.g., a shield gas) on an ionized plasma gas flowing through a plasma arc torch. Some of the torch tips described herein include a nozzle with a conical external shape combined with a shield with complementing internal geometry to form the angular fluid flow. As a result, a plasma arc torch including the improved nozzle have the benefits of a stabilized ionized plasma gas flow together with enhanced nozzle cooling and protection from reflecting slag during torch use.
    Type: Grant
    Filed: April 19, 2006
    Date of Patent: November 9, 2010
    Assignee: Hypertherm, Inc.
    Inventors: Zheng Duan, Stephen M. Liebold, Aaron D. Brandt
  • Publication number: 20100078408
    Abstract: A nozzle for a plasma torch can include a body that has an inner surface, an outer surface, a proximal end, and an exit orifice at a distal end. The nozzle can also include a liner surrounded by the inner surface of the body. The liner can include a proximal end and an exit orifice at a distal end adjacent the exit orifice of the body. The nozzle can include at least one vent passage formed in the body. The vent passage can have an inlet formed in the inner surface of the body and an outlet formed in the outer surface of the body. The vent passage can be disposed between the proximal end of the body and the proximal end of the liner. The plasma arc torch can include a configuration that allows for increased electrode life and nozzle life for a vented high current plasma process.
    Type: Application
    Filed: September 30, 2008
    Publication date: April 1, 2010
    Applicant: HYPERTHERM, INC.
    Inventors: Stephen M. Liebold, Brian J. Currier
  • Patent number: 7598473
    Abstract: The invention is generally directed to a nozzle for a plasma torch, the nozzle having a rear portion that defines at least a portion of a plasma chamber and a front portion that includes a first end and a second end. The first end is adjacent the rear portion, and the second end defines a plasma exit portion. One or more fluid passageways are disposed within the front portion and extend from the first end to the second end. The fluid passageways have passageway exit portions that provide one or more discrete jets of a secondary fluid to surround a plasma jet that is ejected from the plasma exit portion. Features of the invention include faster cutting, thicker workpiece piercing capability, reduced noise, improved arc stability, and increased consumable life, all of which improve productivity associated with plasma arc torch workpiece processing.
    Type: Grant
    Filed: May 11, 2006
    Date of Patent: October 6, 2009
    Assignee: Hypertherm, Inc.
    Inventors: David Jonathan Cook, Stephen M. Liebold, Jon W. Lindsay, Zheng Duan
  • Publication number: 20090230097
    Abstract: A shield for a plasma arc torch that pierces and cuts a metallic workpiece producing a splattering of molten metal directed at the torch, the shield protecting consumable components of the plasma arc torch from the splattering molten metal. The shield can include a body, a first surface of the body configured to be contact-cooled by a gas flow, a second surface of the body configured to be contact-cooled by a liquid flow, and a seal assembly configured to be secured to the body and disposed relative to the second surface configured to retain the liquid flow contact-cooling the second surface.
    Type: Application
    Filed: March 12, 2008
    Publication date: September 17, 2009
    Applicant: Hypertherm, Inc.
    Inventors: Stephen M. Liebold, Jon W. Lindsay
  • Publication number: 20090230095
    Abstract: A shield for a plasma arc torch that pierces and cuts a metallic workpiece producing a splattering of molten metal directed at the torch, the shield protecting consumable components of the plasma arc torch from the splattering molten metal. The shield can include a body, a first surface of the body configured to be contact-cooled by a gas flow, a second surface of the body configured to be contact-cooled by a liquid flow, and a seal assembly configured to be secured to the body and disposed relative to the second surface configured to retain the liquid flow contact-cooling the second surface.
    Type: Application
    Filed: September 29, 2008
    Publication date: September 17, 2009
    Applicant: Hypertherm, Inc.
    Inventors: Stephen M. Liebold, Jon W. Lindsay, Brian J. Currier
  • Publication number: 20080210670
    Abstract: A method and apparatus for controlling a gas supply to a plasma arc torch uses a proportional control solenoid valve positioned adjacent the torch to manipulate the gas flow to the torch, thereby extending electrode life during arc transfer and shutdown. Swirl ring design can be simplified and gas supply and distribution systems become less complicated. The invention also allows manipulation of shield gas flow to reduce divot formation when making interior cuts. The system can be controlled with a digital signal processor utilizing a feedback loop from a sensor.
    Type: Application
    Filed: April 25, 2008
    Publication date: September 4, 2008
    Applicant: Hypertherm, Inc.
    Inventors: Aaron D. Brandt, Christopher S. Passage, Shane M. Selmer, Girish R. Kamath, Guy T. Best, Stephen M. Liebold, Jon W. Lindsay, Zheng Duan