Patents by Inventor Stephen M. Menke
Stephen M. Menke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12161013Abstract: The present disclosure provides an article including a layer having a nanostructured first surface including nanofeatures and an opposing second surface, and an organic layer including a major surface attached to a portion of the nanofeatures. The nanostructured first surface includes protruding features that are formed of a single composition and/or recessed features. The nanofeatures and the major surface of the second layer together define at least one void. The present disclosure also provides a method of making the article including contacting nanofeatures of a layer having a nanostructured surface with a major surface of an organic layer and reacting at least one material to secure the two layers together. In addition, the present disclosure provides an optical information display and an OLED device including the article. The nanostructured surface of the article is protected from damage and contamination by the organic layer.Type: GrantFiled: September 16, 2020Date of Patent: December 3, 2024Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Jeffrey L. Solomon, Henrik B. van Lengerich, Bryan V. Hunt, Tabitha A Silliman, William Blake Kolb, Nicholas C. Erickson, Stephen M. Menke, Derek W. Patzman, Justin P Meyer, Bert T. Chien, Thomas E. Muehle, Thomas P. Klun
-
Patent number: 12133415Abstract: An organic light emitting diode (OLED) display is described, and includes a pixelated OLED display panel including N a plurality of pixels, each pixel including a plurality of subpixels, and each subpixel including a plurality of OLED layers. A hybrid color correction component is disposed on the pixelated OLED display panel, and the hybrid color-correction component includes a nanostructured interface and an angular transformation layer, the angular transformation layer is disposed between the nanostructured interface and the pixelated OLED display panel.Type: GrantFiled: March 24, 2020Date of Patent: October 29, 2024Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Stephen M. Menke, Nicholas C. Erickson, Jathan D. Edwards
-
Publication number: 20240288703Abstract: A light control layer includes alternating transmissive and absorptive regions, along one or two dimensions. The light control layer may be substantially transparent, or have high transmission, for light incident at or near a normal angle to its surface, while absorbing light incident at angles away from normal. The height of the absorptive region, defined orthogonal to the local display surface, may be much greater than the width of the absorptive region resulting in a high aspect ratio structure. The width of the absorptive region may be relatively thin compared to the width of a pixel in a display. The light control layer may be applied to a display or incorporated into a display. The light control layer may be part of a film stack including other functional layers that cooperatively provide desirable optical properties.Type: ApplicationFiled: September 23, 2022Publication date: August 29, 2024Inventors: Nicholas C. Erickson, Raymond J. Kenney, Daniel J. Schmidt, Brett J. Sitter, Kevin W. Gotrik, Stephen M. Menke, Jathan D. Edwards
-
Publication number: 20240280737Abstract: An organic light emitting diode (OLED) display includes a pixelated OLED display panel and a color-correction component disposed on the pixelated OLED display panel. The pixelated OLED display panel has a ratio of blue-to-red color mixing weights at 30 degrees of ?030, and a ratio of blue-to-red color mixing weights at 45 degrees of ?045, where ?045??030?1.05 and 1.5??045?1.1. The color-correction component is configured such that a ratio of blue-to-red color mixing weights at 45 degrees of the display is ?45 and a ratio of blue-to-red color mixing weights at 30 degrees of the display is ?30, where ?045?0.1??45?2.1??045 and ?030?0.05??30?2.05??030. Methods of making OLED displays are described.Type: ApplicationFiled: April 30, 2024Publication date: August 22, 2024Inventors: Nicholas C. Erickson, David G. Freier, Robert L. Brott, Bing Hao, David A. Rosen, Stephen M. Menke, Bert T. Chien, Seong Taek Lee, Encai Hao, Zhaohui Yang, Albert I. Everaerts, Yongshang Lu, William Blake Kolb, Keith R. Bruesewitz, Adam D. Haag, Sun-Yong Park, Timothy J. Nevitt (Deceased), Brianna N. Wheeler, Jody L. Peterson, Gilles J. Benoit
-
Patent number: 12007593Abstract: An OLED display including a display panel and a color-correction component is described. A plurality of comparative display panels otherwise equivalent to the display panel but having one or more different optical thicknesses of OLED layers have a maximum white-point color shift from 0 to 45 degrees of WPCSC45 and a white-point axial efficiency of WPAEC. The plurality of comparative display panels defines a performance curve along a boundary of performance points. The OLED display and the display panel have respective maximum white-point color shifts from 0 to 45 degrees of WPCS45 and WPCS045 and respective white-point axial efficiencies of WPAE and WPAE0. WPCS045 and WPAE0 defines a performance point of the display panel to the right of the performance curve and WPCS45 and WPAE defines a performance point of the OLED display above or to the left of the performance curve. Methods of making the OLED display are described.Type: GrantFiled: April 9, 2019Date of Patent: June 11, 2024Assignee: 3M INNOVATIVE PROPERTIES COMPANYInventors: Nicholas C. Erickson, David G. Freier, Robert L Brott, Bing Hao, David A. Rosen, Stephen M. Menke, Bert T. Chien, Seong Taek Lee, Encai Hao, Zhaohui Yang, Albert I. Everaerts, Yongshang Lu, William Blake Kolb, Keith R. Bruesewitz, Adam D. Haag, Sun-Yong Park, Timothy J. Nevitt, Brianna N. Wheeler, Jody L. Peterson, Gilles J. Benoit
-
Publication number: 20230331928Abstract: A hyperbranched polymer comprising a reaction product of a hydrosilylation reaction catalyst and components a) and b), which combined contain 15 to 60 percent by weight of aromatic carbon atoms. Component a) is at least one first organosilane independently having p vinyl groups and consisting of C, H, Si, and optionally O atoms, wherein each p is independently an integer greater than or equal to 2. Component b) is at least one second organosilane independently having q Si—H groups and consisting of C, H, Si, and optionally O atoms, wherein each q is independently an integer greater than or equal to 2. p/q is at least 3.1. A curable composition comprises the hyperbranched polymer and a crosslinker system. An at least partially reaction product of the curable composition and N electronic articles including the same are also disclosed.Type: ApplicationFiled: August 10, 2021Publication date: October 19, 2023Inventors: Claire Hartmann-Thompson, Nicholas C. Erickson, Stephen M. Menke
-
Publication number: 20230314676Abstract: A display includes a pixelated emission surface including a plurality of blue, green and red light emitting pixels having emission peaks at respective blue, green and red peak wavelengths. The display includes a plurality of blue light emitting sources aligned to the plurality of blue, green and red light emitting pixels in a one-to-one correspondence. An optical film is disposed between the emission surface and the plurality of blue light emitting sources. Each region of the optical film that is disposed between a blue light emitting source and the corresponding blue light emitting pixel transmits at least 70% of substantially normally incident light having the blue peak wavelength. Each region of the optical film that is disposed between a blue light emitting source and the corresponding green or red light emitting pixel reflects at least 50% of substantially normally incident light having the blue peak wavelength.Type: ApplicationFiled: August 11, 2021Publication date: October 5, 2023Inventors: Stephen M. Menke, Gilles J.B. Benoit, Adam D. Haag, Kevin W. Gotrik, Nicholas C. Erickson
-
Publication number: 20230127519Abstract: The present disclosure provides an article including either at least two layers each having at least one enclosed void that is defined in part by nanostructured surfaces, or a layer having at least one enclosed void that is defined by two nanostructured surfaces in contact with each other. In addition, the present disclosure provides an optical information display and an OLED device including the article. The nanostructured surface of the article is protected from damage and contamination by the presence of another layer.Type: ApplicationFiled: April 13, 2021Publication date: April 27, 2023Inventors: Jeffrey L. Solomon, Stephen M. Menke, Nicholas C. Erickson, Daniel W. Hennen, Derek W. Patzman, Thomas P. Klun
-
Publication number: 20220271261Abstract: The present disclosure provides an article including a layer having a nanostructured first surface including nanofeatures and an opposing second surface, and an organic layer including a major surface attached to a portion of the nanofeatures. The nanostructured first surface includes protruding features that are formed of a single composition and/or recessed features. The nanofeatures and the major surface of the second layer together define at least one void. The present disclosure also provides a method of making the article including contacting nanofeatures of a layer having a nanostructured surface with a major surface of an organic layer and reacting at least one material to secure the two layers together. In addition, the present disclosure provides an optical information display and an OLED device including the article. The nanostructured surface of the article is protected from damage and contamination by the organic layer.Type: ApplicationFiled: September 16, 2020Publication date: August 25, 2022Inventors: Jeffrey L. Solomon, Henrik B. van Lengerich, Bryan V. Hunt, Tabitha A. Silliman, William Blake Kolb, Nicholas C. Erickson, Stephen M. Menke, Derek W. Patzman, Justin P. Meyer, Bert T. Chien, Thomas E. Muehle, Thomas P. Klun
-
Publication number: 20220231095Abstract: An organic light emitting diode (OLED) display is disclosed. The OLED display includes a first stack having a first emission layer and a first layer. The first emission layer emits red light, green light, or blue light. The OLED display includes a second stack having a second emission layer and a second layer. The second stack emits light of a different angular spectral distribution as that emitted by the first stack. Further, a thickness of the second layer is different from a thickness of the first layer such that light emitted by the first emission layer resonates within the first stack at a first degree and light emitted by the second emission layer resonates within the second stack at a second degree, the first degree being greater than the second degree.Type: ApplicationFiled: May 7, 2020Publication date: July 21, 2022Inventors: Nicholas C. ERICKSON, Stephen M. MENKE
-
Publication number: 20220123267Abstract: An organic light emitting diode (OLED) display is described, and includes a pixelated OLED display panel including N a plurality of pixels, each pixel including a plurality of subpixels, and each subpixel including a plurality of OLED layers. A hybrid color correction component is disposed on the pixelated OLED display panel, and the hybrid color-correction component includes a nanostructured interface and an angular transformation layer, the angular transformation layer is disposed between the nanostructured interface and the pixelated OLED display panel.Type: ApplicationFiled: March 24, 2020Publication date: April 21, 2022Inventors: Stephen M. Menke, Nicholas C. Erickson, Jathan D. Edwards
-
Publication number: 20210098546Abstract: An OLED display including a display panel and a color-correction component is described. A plurality of comparative display panels otherwise equivalent to the display panel but having one or more different optical thicknesses of OLED layers have a maximum white-point color shift from 0 to 45 degrees of WPCSC45 and a white-point axial efficiency of WPAEC. The plurality of comparative display panels defines a performance curve along a boundary of performance points. The OLED display and the display panel have respective maximum white-point color shifts from 0 to 45 degrees of WPCS45 and WPCS045 and respective white-point axial efficiencies of WPAE and WPAE0. WPCS045 and WPAE0 defines a performance point of the display panel to the right of the performance curve and WPCS45 and WPAE defines a performance point of the OLED display above or to the left of the performance curve. Methods of making the OLED display are described.Type: ApplicationFiled: April 9, 2019Publication date: April 1, 2021Inventors: Nicholas C. Erickson, David G. Freier, Robert L. Brott, Bing Hao, David A. Rosen, Stephen M. Menke, Bert T. Chien, Song Taek Lee, Encai Hao, Zhaohui Yang, Albert I. Everaerts, Yongshang Lu, William Blake Kolb, Keith R. Bruesewitz, Adam D. Haag, Sun-Yong Park, Timothy J. Nevitt (Deceased), Brianna N. Wheeler, Jody L. Peterson, Gilles J. Benoit
-
Publication number: 20160104853Abstract: An example organic photovoltaic device includes an organic electron donor region, and an organic electron acceptor region. The acceptor region forms a donor-acceptor interface with the donor region. At least one of the donor region and the acceptor region includes an exciton permeable interface. An energy transfer imbalance across the exciton permeable interface is configured to bias exciton transfer towards the donor-acceptor interface.Type: ApplicationFiled: October 9, 2015Publication date: April 14, 2016Inventors: Russell J. Holmes, Tyler K. Mullenbach, Stephen M. Menke