Patents by Inventor Stephen Maguire
Stephen Maguire has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240350132Abstract: A device for surgical retraction having a frame flexible to conform to a patient's anatomy, the frame including at least one anchoring member for retaining a tissue retraction member. A stabilizing member is attached to the frame and secures the stabilizing member to a patient, wherein a tissue retraction member applying a force to the frame in a first direction is counterbalanced by the stabilizing member to provide a force in a second opposite direction.Type: ApplicationFiled: May 17, 2024Publication date: October 24, 2024Applicant: BIOPHYX SURGICAL, INC.Inventors: Robert Richards, Stephen Maguire
-
Patent number: 12102314Abstract: The system includes a frame composed of materials and geometry allowing selective deformation in a plane perpendicular to a patient's anatomy at the surgical site but resisting deformation in a plane parallel to the anatomy. The frame is connected to stabilizing features and sheets, which are attached to adhesive to secure the frame to the patient. The features, sheets, and adhesive layers extend both into and beyond the frame. An integrated sheet covers the prospective incision site on the patient. When positioned at the site, the frame conforms to the patient. Anchor points are distributed along the frame to reversibly secure and provide a stable base for surgical retractors, even when unilaterally applied. By adaptable positioning and design of the stabilizing members and adhesive layers on the frame, the system is able to provide optimal tractional stability when experiencing tensile loads in myriad surgical environments including ophthalmic and spinal surgery.Type: GrantFiled: September 25, 2023Date of Patent: October 1, 2024Assignee: Biophyx Surgical, Inc.Inventors: Robert Richards, Stephen Maguire
-
Patent number: 12016544Abstract: A device for surgical retraction having a frame flexible to conform to a patient's anatomy, the frame including at least one anchoring member for retaining a tissue retraction member. A stabilizing member is attached to the frame and secures the stabilizing member to a patient, wherein a tissue retraction member applying a force to the frame in a first direction is counterbalanced by the stabilizing member to provide a force in a second opposite direction.Type: GrantFiled: April 14, 2023Date of Patent: June 25, 2024Assignee: BIOPHYX SURGICAL, INC.Inventors: Robert Richards, Stephen Maguire
-
Publication number: 20240008865Abstract: The system includes a frame composed of materials and geometry allowing selective deformation in a plane perpendicular to a patient's anatomy at the surgical site but resisting deformation in a plane parallel to the anatomy. The frame is connected to stabilizing features and sheets, which are attached to adhesive to secure the frame to the patient. The features, sheets, and adhesive layers extend both into and beyond the frame. An integrated sheet covers the prospective incision site on the patient. When positioned at the site, the frame conforms to the patient. Anchor points are distributed along the frame to reversibly secure and provide a stable base for surgical retractors, even when unilaterally applied. By adaptable positioning and design of the stabilizing members and adhesive layers on the frame, the system is able to provide optimal tractional stability when experiencing tensile loads in myriad surgical environments including ophthalmic and spinal surgery.Type: ApplicationFiled: September 25, 2023Publication date: January 11, 2024Applicant: Biophyx Surgical, Inc.Inventors: Robert Richards, Stephen Maguire
-
Patent number: 11819202Abstract: The system includes a frame composed of materials and geometry allowing selective deformation in a plane perpendicular to a patient's anatomy at the surgical site but resisting deformation in a plane parallel to the anatomy. The frame is connected to stabilizing features and sheets, which are attached to adhesive to secure the frame to the patient. The features, sheets, and adhesive layers extend both into and beyond the frame. An integrated sheet covers the prospective incision site on the patient. When positioned at the site, the frame conforms to the patient. Anchor points are distributed along the frame to reversibly secure and provide a stable base for surgical retractors, even when unilaterally applied. By adaptable positioning and design of the stabilizing members and adhesive layers on the frame, the system is able to provide optimal tractional stability when experiencing tensile loads in myriad surgical environments including ophthalmic and spinal surgery.Type: GrantFiled: October 25, 2021Date of Patent: November 21, 2023Assignee: BIOPHYX SURGICAL, INC.Inventors: Robert Richards, Stephen Maguire
-
Publication number: 20230309813Abstract: A device for surgical retraction having a frame flexible to conform to a patient’s anatomy, the frame including at least one anchoring member for retaining a tissue retraction member. A stabilizing member is attached to the frame and secures the stabilizing member to a patient, wherein a tissue retraction member applying a force to the frame in a first direction is counterbalanced by the stabilizing member to provide a force in a second opposite direction.Type: ApplicationFiled: April 14, 2023Publication date: October 5, 2023Inventors: Robert Richards, Stephen Maguire
-
Publication number: 20230255611Abstract: The system includes a frame composed of materials and geometry allowing selective deformation in a plane perpendicular to a patient's anatomy at the surgical site but resisting deformation in a plane parallel to the anatomy. The frame is connected to stabilizing features and sheets, which are attached to adhesive to secure the frame to the patient. The features, sheets, and adhesive layers extend both into and beyond the frame. An integrated sheet covers the prospective incision site on the patient. When positioned at the site, the frame conforms to the patient. Anchor points are distributed along the frame to reversibly secure and provide a stable base for surgical retractors, even when unilaterally applied. By adaptable positioning and design of the stabilizing members and adhesive layers on the frame, the system is able to provide optimal tractional stability when experiencing tensile loads in myriad surgical environments including ophthalmic and spinal surgery.Type: ApplicationFiled: October 25, 2021Publication date: August 17, 2023Inventors: Robert Richards, Stephen Maguire
-
Patent number: 8506604Abstract: A surgical implant is provided that includes first and second abutment surfaces between which are positioned a force imparting mechanism. A sheath is positioned between the first and second abutment surfaces, and surrounds the force imparting mechanism. The sheath is fabricated from a material that accommodates relative movement of the abutment members, while exhibiting substantially inert behavior relative to surrounding anatomical structures. The sheath is generally fabricated from expanded polytetrafluoroethylene, ultra-high molecular weight polyethylene, a copolymer of polycarbonate and a urethane, or a blend of a polycarbonate and a urethane. The force imparting member may include one or more springs, e.g., a pair of nested springs. The surgical implant may be a dynamic spine stabilizing member that is advantageously incorporated into a spine stabilization system to offer clinically efficacious results.Type: GrantFiled: November 28, 2011Date of Patent: August 13, 2013Assignee: Rachiotek, LLCInventors: Jens Peter Timm, Jeffrey S. White, Carmen M. Walters, Manohar M. Panjabi, Ronald T. Callahan, II, Ernest Corrao, Stephen Maguire, Bryan Hildebrand
-
Publication number: 20120253404Abstract: A surgical implant is provided that includes first and second abutment surfaces between which are positioned a force imparting mechanism. A sheath is positioned between the first and second abutment surfaces, and surrounds the force imparting mechanism. The sheath is fabricated from a material that accommodates relative movement of the abutment members, while exhibiting substantially inert behavior relative to surrounding anatomical structures. The sheath is generally fabricated from expanded polytetrafluoroethylene, ultra-high molecular weight polyethylene, a copolymer of polycarbonate and a urethane, or a blend of a polycarbonate and a urethane. The force imparting member may include one or more springs, e.g., a pair of nested springs. The surgical implant may be a dynamic spine stabilizing member that is advantageously incorporated into a spine stabilization system to offer clinically efficacious results.Type: ApplicationFiled: November 28, 2011Publication date: October 4, 2012Applicant: RACHIOTEK, LLCInventors: Jens Peter Timm, Jeffrey S. White, Carmen Walters, Manohar M. Panjabi, Ronald T. Callahan, II, Ernest Corrao, Stephen Maguire, Bryan Hildebrand
-
Patent number: 8235995Abstract: A bone staple (10) for securing a first bone region (12A) to a second bone region (12B) includes a staple body (16) having a first leg section (18), a second leg section (20), and a connector section (22). The first leg section (18) is insertable into the first bone region (12A). The second leg section (20) is insertable into the second bone region (12B). The connector section (22) connects the first leg section (18) to the second leg section (20). The connector section (22) includes a deformable region (22A) that is movable from a first configuration (14A) in which the leg sections (18) (20) are spaced apart a first distance (24) and a second configuration (14B) in which the leg sections (18) (20) are spaced apart a second distance (26) that is less than the first distance (24). In one embodiment, compression of the deformable region (22A) causes the deformable region (22A) to move from the first configuration (14A) to the second configuration (14B).Type: GrantFiled: June 19, 2007Date of Patent: August 7, 2012Assignee: Tornier, Inc.Inventors: Louse M. Focht, Rebecca H. Wahl, John C. Nadworny, Stephen A. Maguire, Ernie Corrao, Robert H. Humphries, Jr.
-
Publication number: 20120150030Abstract: The present disclosure provides instruments and systems for accessing and removing hyaline cartilage from desired donor sites. The present disclosure also provides instruments/systems for implantation of hyaline cartilage grafts, e.g., to fill osteochondral defects. The apparatus/systems may be used in connection with mapping techniques and systems. Thus, in exemplary embodiments of the present disclosure, a clinician may be guided in his use of the disclosed apparatus/systems by articular joint surface mapping data in locating/identifying harvest sites for “best fit” grafts, i.e., grafts that exhibit desired geometric and/or surface attributes for use in particular implantation site(s). Alternatively, the disclosed instruments/systems may be employed to access anatomical sites independent of such mapping techniques/systems.Type: ApplicationFiled: July 15, 2010Publication date: June 14, 2012Applicants: ACCELERATED ORTHOPEDIC TECHNOLOGIES, INC., YALE UNIVERSITYInventors: John S. Reach, JR., Ronald Litke, Stephen Santangelo, Stephen Maguire
-
Patent number: 7811138Abstract: An apparatus for creating an electrical connection with a surgical tool is provided that is capable of engaging the shafts of rotatable surgical tools having varying diameters. In one aspect, the apparatus includes a body of nonconductive material connected to a pair of spaced, electrical contact members that provide two spaced points of contact with the tool shaft. In another aspect, a contact arm is provided which pivots within a slot formed within a housing to receive larger diameter tool shafts. Additionally, the contact arm closes an opening on the housing and resiliently shifts to an open position as the contact arm is brought into engagement with the tool shaft. A method of connecting a conductor assembly to a rotatable tool shaft is also provided which includes using tension in the conductor assembly to resist rotation of a gripping end of the assembly connected to a rotatable tool.Type: GrantFiled: March 2, 2009Date of Patent: October 12, 2010Assignee: Pioneer Surgical Technology, Inc.Inventors: Stephen Santangelo, Stephen Maguire
-
Patent number: 7635379Abstract: A motion interface structure for use with a pedicle screw is provided, the motion interface structure defining a central passage having an internal face. A helical thread is formed on at least a portion of the internal face of the central passage. The motion interface element is designed to cooperate with an upstanding region of a pedicle screw. The upstanding region includes a threaded region that is adapted to threadingly engage the helical thread associated with the motion interface element. The motion interface element may take the form of a spherical element or a universal joint mechanism. The pedicle screw and motion interface element may be incorporated into a spinal stabilization system that includes one or more additional pedicle screw/motion interface element subassemblies. The spinal stabilization system may also include a dynamic stabilizing element that provides clinically efficacious results.Type: GrantFiled: December 31, 2004Date of Patent: December 22, 2009Assignee: Applied Spine Technologies, Inc.Inventors: Ronald Callahan, Jeffrey White, Ernest Corrao, Stephen Maguire
-
Patent number: 7615068Abstract: A pedicle screw is provided that includes an upwardly extending collet. The collet may include downwardly extending slots that define deflectable segments therebetween. When a spherical element or other structure, e.g., a non-dynamic stabilizing element, is positioned around the collet, introduction of a set screw causes outward deflection of the upstanding segments into engagement with the spherical element. A snap ring may be interposed between the collet and the spherical element to facilitate positioning therebetween. In an alternative embodiment, a non-slotted collet is employed. In such embodiment, the collet and the spherical element may be threadingly engaged and may include a snap ring therebetween. The pedicle screw subassemblies may be incorporated into a spinal stabilization system which may include a dynamic stabilizing member to provide clinically efficacious results.Type: GrantFiled: December 31, 2004Date of Patent: November 10, 2009Assignee: Applied Spine Technologies, Inc.Inventors: Jens Peter Timm, Bryan Hildebrand, Ronald Callahan, Ernest Corrao, Stephen Maguire, Carmen Walters
-
Publication number: 20090221153Abstract: An apparatus for creating an electrical connection with a surgical tool is provided that is capable of engaging the shafts of rotatable surgical tools having varying diameters. In one aspect, the apparatus includes a body of nonconductive material connected to a pair of spaced, electrical contact members that provide two spaced points of contact with the tool shaft. In another aspect, a contact arm is provided which pivots within a slot formed within a housing to receive larger diameter tool shafts. Additionally, the contact arm closes an opening on the housing and resiliently shifts to an open position as the contact arm is brought into engagement with the tool shaft. A method of connecting a conductor assembly to a rotatable tool shaft is also provided which includes using tension in the conductor assembly to resist rotation of a gripping end of the assembly connected to a rotatable tool.Type: ApplicationFiled: March 2, 2009Publication date: September 3, 2009Applicant: PIONEER SURGICAL TECHNOLOGY, INC.Inventors: Stephen Santangelo, Stephen Maguire
-
Publication number: 20080319443Abstract: A bone staple (10) for securing a first bone region (12A) to a second bone region (12B) includes a staple body (16) having a first leg section (18), a second leg section (20), and a connector section (22). The first leg section (18) is insertable into the first bone region (12A). The second leg section (20) is insertable into the second bone region (12B). The connector section (22) connects the first leg section (18) to the second leg section (20). The connector section (22) includes a deformable region (22A) that is movable from a first configuration (14A) in which the leg sections (18) (20) are spaced apart a first distance (24) and a second configuration (14B) in which the leg sections (18) (20) are spaced apart a second distance (26) that is less than the first distance (24). In one embodiment, compression of the deformable region (22A) causes the deformable region (22A) to move from the first configuration (14A) to the second configuration (14B).Type: ApplicationFiled: June 19, 2007Publication date: December 25, 2008Inventors: Louse M. Focht, Rebecca H. Wahl, John C. Nadworny, Stephen A. Maguire, Ernie Corrao, Robert H. Humphries, JR.
-
Publication number: 20070297278Abstract: A container of liquid color material has a diaphragm liquid color pump located therewithin for providing liquid color from the container and non-drip apparatus for releaseably connecting the container with a blender for supply of liquid color thereto and methods for pumping and supplying liquid color incorporating the same. In some embodiments a volumetric controller is utilized for driving and regulating the pump.Type: ApplicationFiled: June 4, 2007Publication date: December 27, 2007Inventor: Stephen Maguire
-
Publication number: 20070265493Abstract: The present invention provides a ligating band dispenser that is mounted on the distal end of an endoscope. The ligator is configured to deliver multiple ligating bands to a plurality of internal sites in a patient. The ligating bands are carried on a tubular band carrier member that is retractable relative to the distal end of the endoscope in order to preserve visibility through the endoscope during navigation, then extendable to define a suction chamber for tissue aspiration during band delivery. A tubular band driver member is slidable over the band carrier member and engages bands individually to push them off the distal end of the band carrier and onto a selected treatment site. A single-hand operated control handle for selectively operating the extension of the band carrier and movement of the band driver to release a band is also provided and is slidably and removably mounted to the endoscope shaft.Type: ApplicationFiled: March 12, 2007Publication date: November 15, 2007Applicant: CONMED ENDOSCOPIC TECHNOLOGIES, INC.Inventors: Christopher Zirps, Timothy Membrino, Scott Reed, Ernest Corrao, Stephen Maguire, Eric Mears, David Copeland, John Murphy, Joseph Logan, Sean Silva, Stephen Yardan
-
Publication number: 20070093814Abstract: An elongated member forming a spinal support rod is implantable adjacent the spine of a patient, and includes an axial span or spans for spanning respective spinal levels to promote efficacious spinal support/stabilization. As with conventional spinal support rods used in connection with lumbar fusion and other related procedures, the elongated member extends in an axial direction, and is substantially dimensionally stable, both radially and axially. The elongated member is further capable of bending, flexing, and/or deflecting laterally (e.g., along any and/or substantially all transverse directions) to an extent that preserves at least some spinal motion. Such elongated members can include axial spans that manifest a radially segmented geometry relative to the axial direction, include a sleeve and a series of structural members or a coil spring enclosed within the sleeve, and/or include a coil spring and a restraining element passing at least partially through the coil spring.Type: ApplicationFiled: October 11, 2005Publication date: April 26, 2007Inventors: Ronald Callahan, Ernest Corrao, Stephen Maguire, Stephen Santangelo
-
Publication number: 20070093815Abstract: An elongated member forming a spinal support rod is implantable adjacent the spine of a patient and includes an axial span or spans for spanning respective spinal levels to promote efficacious spinal support/stabilization. The axial span manifests a double helical geometry. The axial span has a rod-like profile of a diameter similar to conventional spinal support rods used for lumbar spinal fusion, and provides for use across multiple spinal levels and with multiple adjustable attachment points for associated spine attachment devices, such as pedicle screws, to accommodate different patient anatomies.Type: ApplicationFiled: October 11, 2005Publication date: April 26, 2007Inventors: Ronald Callahan, Ernest Corrao, Stephen Maguire, Stephen Santangelo