Patents by Inventor Stephen Mark Rossnagel

Stephen Mark Rossnagel has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6380075
    Abstract: A method for forming an open-bottom liner for a conductor in an electronic structure and devices formed are disclosed. In the method, a pre-processed electronic substrate that has a dielectric layer on top is first provided. Via openings are then formed in a dielectric layer to expose an underlying conductive layer. The electronic substrate is then positioned in a cold-wall, low pressure chemical vapor deposition chamber, while the substrate is heated to a temperature of at least 350° C. A precursor gas is then flowed into the CVD chamber to a partial pressure of not higher than 10 mTorr, and metal is deposited from the precursor gas onto sidewalls of the via openings while bottoms of the via openings are substantially uncovered by the metal. The present invention method may be further enhanced by, optionally, modifications of a I-PVD technique or a seed layer deposition technique.
    Type: Grant
    Filed: September 29, 2000
    Date of Patent: April 30, 2002
    Assignee: International Business Machines Corporation
    Inventors: Cyril Cabral, Jr., Chao-Kun Hu, Sandra Guy Malhotra, Fenton Read McFeely, Stephen Mark Rossnagel, Andrew Herbert Simon
  • Patent number: 6342132
    Abstract: Gas rarefaction, and loss of ionization efficiency, resulting from magnetron sputtering in IPVD may be avoided by operating the magnetron in a pulsed fashion, rather than in a steady state, during the deposition process. The magnetron is powered during a first time period to produce a flux of atoms which heat the gas, and depowered during a second time period. The gas flows through the device during the powering step and the depowering step so as to prevent rarefaction of the gas by heating. The flow of gas through the device is characterized by a residence time. If the residence time is given as &tgr;, and the first time period and the second time period are substantially equal, the operation of the magnetron may be characterized by a frequency of 1/&tgr;. The second time period may be greater than the first time period.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: January 29, 2002
    Assignee: International Business Machines Corporation
    Inventor: Stephen Mark Rossnagel
  • Patent number: 6238532
    Abstract: A cooling structure and a reinforcing structure are described for use with a radio-frequency coil in an ionized physical vapor deposition apparatus. The cooling structure includes a portion for carrying coolant and is proximate to the RF coil along the outer circumference thereof. The cooling structure is shaped relative to the RF coil so that thermal expansion of the RF coil brings the RF coil into close contact with the cooling structure, thereby facilitating heat transfer from the RF coil to the coolant. The reinforcing structure is similarly shaped, and may be integrated with the cooling structure. In addition, the RF coil or cooling/reinforcing structure may be mounted to the wall of the process chamber with telescoping mounting posts, which permit the RF coil to maintain its shape while undergoing thermal expansion. The parasitic inductance of the RF coil leads is reduced by arranging those leads coaxially, thereby minimizing power losses in the RF coil.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: May 29, 2001
    Assignee: International Business Machines Corporation
    Inventors: Stephen Mark Rossnagel, Darryl D. Restaino, Andrew Herbert Simon, Pavel Smetana
  • Patent number: 6176931
    Abstract: Improvements are described for a wafer clamp ring used in an IPVD apparatus to provide cooling for the wafer clamp ring, to protect the wafer clamp ring from ion bombardment, and to prevent damage to the wafer. The wafer clamp ring is placed on a cooling fixture when not required for a deposition process. The fixture is annular in shape and in close thermal contact with a circulating coolant and is thereby cooled below ambient temperature. The cooling line and the cooling fixture are fixed relative to the IPVD device, so that problems associated with flexible cooling lines are avoided. An annular grounded shield may be provided between the plasma and clamp ring to protect the clamp ring against ion bombardment during the deposition process. The wafer clamp ring may have a portion which overhangs the wafer during a deposition process, and which has a ridge portion extending downwards therefrom and tapering to a knife edge.
    Type: Grant
    Filed: October 29, 1999
    Date of Patent: January 23, 2001
    Assignee: International Business Machines Corporation
    Inventors: Darryl D. Restaino, Stephen Mark Rossnagel, Andrew Herbert Simon, Pavel Smetana, Edward C. Cooney, III