Patents by Inventor Stephen Maxwell Rowland

Stephen Maxwell Rowland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9555166
    Abstract: The invention relates to a method for healing blood vessels by stimulating the formation of a confluent endothelial autologous cell layer in vivo on an implantable metallic stent having a lumen and a luminal surface, and an exterior surface. More specifically, the method includes implanting the stent with a coating in a patient in need of thereof; wherein the coating includes one or more layers of a matrix covalently adherent on said luminal and exterior surface of said stent containing one or more pharmaceutical substances on said exterior surface and a therapeutically effective amount of a single type of antibody, antibody fragments or combinations thereof being compatible to binding selectively to a specific cell surface antigen of circulating autologous endothelial progenitor cells in peripheral blood. In addition, genetically engineered endothelial progenitor cells can be captured on said luminal surface of stent in vivo, to proliferate to form rapidly a confluent endothelium in situ.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: January 31, 2017
    Assignee: OrbusNeich Medical Inc.
    Inventors: Michael John Bradley Kutryk, Robert John Cottone, Jr., Stephen Maxwell Rowland
  • Publication number: 20150352263
    Abstract: The invention relates to a method for healing blood vessels by stimulating the formation of a confluent endothelial autologous cell layer in vivo on an implantable metallic stent having a lumen and a luminal surface, and an exterior surface. More specifically, the method includes implanting the stent with a coating in a patient in need of thereof; wherein the coating includes one or more layers of a matrix covalently adherent on said luminal and exterior surface of said stent containing one or more pharmaceutical substances on said exterior surface and a therapeutically effective amount of a single type of antibody, antibody fragments or combinations thereof being compatible to binding selectively to a specific cell surface antigen of circulating autologous endothelial progenitor cells in peripheral blood. In addition, genetically engineered endothelial progenitor cells can be captured on said luminal surface of stent in vivo, to proliferate to form rapidly a confluent endothelium in situ.
    Type: Application
    Filed: August 21, 2015
    Publication date: December 10, 2015
    Inventors: Michael John Bradley Kutryk, Robert John Cottone, JR., Stephen Maxwell Rowland
  • Publication number: 20150352261
    Abstract: The invention relates to a method for healing blood vessels by stimulating the formation of a confluent endothelial autologous cell layer in vivo on an implantable metallic stent having a lumen and a luminal surface, and an exterior surface. More specifically, the method includes implanting the stent with a coating in a patient in need of thereof; wherein the coating includes one or more layers of a matrix covalently adherent on said luminal and exterior surface of said stent containing one or more pharmaceutical substances on said exterior surface and a therapeutically effective amount of a single type of antibody, antibody fragments or combinations thereof being compatible to binding selectively to a specific cell surface antigen of circulating autologous endothelial progenitor cells in peripheral blood. In addition, genetically engineered endothelial progenitor cells can be captured on said luminal surface of stent in vivo, to proliferate to form rapidly a confluent endothelium in situ.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 10, 2015
    Inventors: Michael John Bradley Kutryk, Robert John Cottone, JR., Stephen Maxwell Rowland
  • Publication number: 20130035755
    Abstract: The invention relates to a method for healing blood vessels by stimulating the formation of a confluent endothelial autologous cell layer in vivo on an implantable metallic stent having a lumen and a luminal surface, and an exterior surface. More specifically, the method includes implanting the stent with a coating in a patient in need of thereof; wherein the coating includes one or more layers of a matrix covalently adherent on said luminal and exterior surface of said stent containing one or more pharmaceutical substances on said exterior surface and a therapeutically effective amount of a single type of antibody, antibody fragments or combinations thereof being compatible to binding selectively to a specific cell surface antigen of circulating autologous endothelial progenitor cells in peripheral blood. In addition, genetically engineered endothelial progenitor cells can be captured on said luminal surface of stent in vivo, to proliferate to form rapidly a confluent endothelium in situ.
    Type: Application
    Filed: August 20, 2012
    Publication date: February 7, 2013
    Applicant: OrbusNeich Medical, Inc.
    Inventors: Michael John Bradley Kutryk, Robert John Cottone, JR., Stephen Maxwell Rowland
  • Patent number: 7803183
    Abstract: A medical device with a coating for capturing target cells in vivo is provided. In particular, the medical device is coated with at least one layer of matrix and a layer of antibodies, antibody fragments or combinations thereof, which bind with specificity to mature or progenitor endothelial cells at various developmental stages to form an endothelial cell layer on the surface of the device. The coated medical device can be, for example, a stent or a synthetic graft and is useful in therapy of diseases such as restenosis, atherosclerosis, and thromboembolic complications.
    Type: Grant
    Filed: April 26, 2004
    Date of Patent: September 28, 2010
    Assignee: OrbusNeich Medical, Inc.
    Inventors: Michael John Bradley Kutryk, Robert John Cottone, Jr., Stephen Maxwell Rowland
  • Patent number: 7037332
    Abstract: A medical device coated with one or more antibodies and one or more layers of a matrix is disclosed. The antibodies or fragments thereof react with an endothelial cell surface antigen. Also disclosed are compositions and methods for producing the medical device. The matrix coating the medical device may be composed of a synthetic material, such as a fullerene, or a naturally occurring material. The fullerenes range from about C60 to about C100. The medical device may be a stent or a synthetic graft. The antibodies promote the adherence of cells captured in vivo on the medical device. The antibodies may be mixed with the matrix or covalently tethered through a linker molecule to the matrix. Following adherence to the medical device, the cells differentiate and proliferate on the medical device. The antibodies may be different types of monoclonal antibodies.
    Type: Grant
    Filed: March 15, 2001
    Date of Patent: May 2, 2006
    Assignee: Orbus Medical Technologies, Inc.
    Inventors: Michael John Bradley Kutryk, Robert John Cottone, Jr., Stephen Maxwell Rowland
  • Publication number: 20050043787
    Abstract: This invention provides compositions and methods for producing a medical device coated with a matrix and an antibody which reacts with an endothelial cell antigen. The matrix coating the medical device may be composed of synthetic material, such as polyurethane, poly-L-lactic acid, cellulose ester or polyethylene glycol. In another embodiment, the matrix is composed of naturally occurring materials, such as collagen, fibrin, elastin, amorphous carbon. In a third embodiment, the matrix may be composed of fullerenes. The fullerenes range from about C60 to about C100. The medical device may be a stent or a synthetic graft. The antibodies promote adherence of endothelial cells on the medical device. The antibodies may be mixed with the matrix or covalently tethered through a linker molecule to the matrix. Following adherence to the medical device, the endothelial cells differentiate and proliferate on the medical device. The antibodies may be different types of monoclonal antibodies.
    Type: Application
    Filed: April 26, 2004
    Publication date: February 24, 2005
    Inventors: Michael John Bradley Kutryk, Robert John Cottone, Stephen Maxwell Rowland
  • Publication number: 20040039441
    Abstract: A drug eluting medical device is provided for implanting into vessels or luminal structures within the body of a patient. The coated medical device, such as a stent, vascular, or synthetic graft comprises a coating consisting of a controlled-release matrix of a bioabsorbable, biocompatible, bioerodible, biodegradable, nontoxic material, such as a Poly(DL-Lactide-co-Glycolide) polymer, and at least one pharmaceutical substance, or bioactive agent incorporated within the matrix or layered within layers of matrix. In particular, the drug eluting medical device when implanted into a patient, delivers the drugs or bioactive agents within the matrix to adjacent tissues in a controlled and desired rate depending on the drug and site of implantation.
    Type: Application
    Filed: May 20, 2003
    Publication date: February 26, 2004
    Inventors: Stephen Maxwell Rowland, Ike Juman, Robert John Cottone, David Lawrence Camp
  • Publication number: 20020049495
    Abstract: This invention provides compositions and methods for producing a medical device coated with a matrix and an antibody which reacts with an endothelial cell antigen. The matrix coating the medical device may be composed of synthetic material, such as polyurethane, poly-L-lactic acid, cellulose ester or polyethylene glycol. In another embodiment, the matrix is composed of naturally occurring materials, such as collagen, fibrin, elastin, amorphous carbon. In a third embodiment, the matrix may be composed of fullerenes. The fullerenes range from about C60 to about C100. The medical device may be a stent or a synthetic graft. The antibodies promote adherence of endothelial cells on the medical device. The antibodies may be mixed with the matrix or covalently tethered through a linker molecule to the matrix. Following adherence to the medical device, the endothelial cells differentiate and proliferate on the medical device. The antibodies may be different types of monoclonal antibodies.
    Type: Application
    Filed: March 15, 2001
    Publication date: April 25, 2002
    Inventors: Michael John Bradley Kutryk, Robert John Cottone, Stephen Maxwell Rowland