Patents by Inventor Stephen Michael Webb

Stephen Michael Webb has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10516477
    Abstract: A submarine optical repeater includes a submarine amplifier module, which further includes a pumping laser module and an optical detector module. The pumping laser module generates optical amplifications within an optical cable, and, in the case of a fault in the optical cable, the optical detector module detects at least one characteristic of an optical signal caused by the fault in the optical cable. This configuration then identifies a particular signal characteristic that indicates a fault within the optical cable.
    Type: Grant
    Filed: November 1, 2017
    Date of Patent: December 24, 2019
    Assignee: Neptune Subsea IP Limited
    Inventors: Stephen Michael Webb, Wayne S Pelouch, Do-Il Chang, John G. Ellison
  • Publication number: 20180241469
    Abstract: An optical communication link that includes two nodes interconnected by an optical channel that comprises optical fiber(s), and that is used to communicate an optical signal comprising multiple optical signal wavelengths. The first node provides an optical signal onto the optical channel towards the second node, or receives an optical signal from the optical channel from the second node. A Raman pump provides Raman pump power into the optical fiber of the optical channel to thereby perform Raman amplification of the optical signal in the optical fiber. The second node determines a quality measurement of at least of optical wavelength signals transmitted by the first node to the second node. The second node also transmits information from the quality measurement back to the first node. A controller at the first node controls at least one parameter of the Raman pump in response to this transmitted information.
    Type: Application
    Filed: April 24, 2018
    Publication date: August 23, 2018
    Inventors: Wayne S. Pelouch, Stephen Michael Webb, John G. Ellison
  • Patent number: 9985727
    Abstract: An optical communication link that includes two nodes interconnected by an optical channel that comprises optical fiber(s), and that is used to communicate an optical signal comprising multiple optical signal wavelengths. The first node provides an optical signal onto the optical channel towards the second node, or receives an optical signal from the optical channel from the second node. A Raman pump provides Raman pump power into the optical fiber of the optical channel to thereby perform Raman amplification of the optical signal in the optical fiber. The second node determines a quality measurement of at least of optical wavelength signals transmitted by the first node to the second node. The second node also transmits information from the quality measurement back to the first node. A controller at the first node controls at least one parameter of the Raman pump in response to this transmitted information.
    Type: Grant
    Filed: April 27, 2015
    Date of Patent: May 29, 2018
    Assignee: Neptune Subsea IP Limited
    Inventors: Wayne S. Pelouch, Stephen Michael Webb, John G. Ellison
  • Publication number: 20180062738
    Abstract: A submarine optical repeater includes a submarine amplifier module, which further includes a pumping laser module and an optical detector module. The pumping laser module generates optical amplifications within an optical cable, and, in the case of a fault in the optical cable, the optical detector module detects at least one characteristic of an optical signal caused by the fault in the optical cable. This configuration then identifies a particular signal characteristic that indicates a fault within the optical cable.
    Type: Application
    Filed: November 1, 2017
    Publication date: March 1, 2018
    Inventors: Stephen Michael Webb, Wayne S. Pelouch, Do-Il Chang, John G. Ellison
  • Patent number: 9831943
    Abstract: A submarine optical repeater includes a submarine amplifier module, which further includes a pumping laser module and an optical detector module. The pumping laser module generates optical amplifications within an optical cable, and, in the case of a fault in the optical cable, the optical detector module detects at least one characteristic of an optical signal caused by the fault in the optical cable. This configuration then identifies a particular signal characteristic that indicates a fault within the optical cable.
    Type: Grant
    Filed: December 17, 2013
    Date of Patent: November 28, 2017
    Assignee: Neptune Subsea IP Limited
    Inventors: Stephen Michael Webb, Wayne S. Pelouch, Do-Il Chang, John G. Ellison
  • Patent number: 9461437
    Abstract: The adjustment of tilt in an optical signal path of a repeater. The repeater includes an optical pump that optically powers a rare-Earth doped fiber amplifier, which amplifies the optical signal. The optical signal path also includes Raman gain stage implemented in a previous optical fiber span in the optical signal path, and which contributes tilt with respect to wavelength. Adjusting the Raman gain and/or the rare-Earth doped gain also adjusts the combined tilt contributed by these gain stages. However, the rare-Earth doped gain operates at least partially in the saturated regime, thereby stabilizing the gain at the output of the rare-Earth doped amplifier. Thus tilt control may be employed by adjusting optical pump power with reduced effect on overall gain.
    Type: Grant
    Filed: March 7, 2014
    Date of Patent: October 4, 2016
    Assignee: Xtera Communications, Inc.
    Inventors: Wayne S. Pelouch, Do-Il Chang, Stephen Michael Webb
  • Publication number: 20150311975
    Abstract: An optical communication link that includes two nodes interconnected by an optical channel that comprises optical fiber(s), and that is used to communicate an optical signal comprising multiple optical signal wavelengths. The first node provides an optical signal onto the optical channel towards the second node, or receives an optical signal from the optical channel from the second node. A Raman pump provides Raman pump power into the optical fiber of the optical channel to thereby perform Raman amplification of the optical signal in the optical fiber. The second node determines a quality measurement of at least of optical wavelength signals transmitted by the first node to the second node. The second node also transmits information from the quality measurement back to the first node. A controller at the first node controls at least one parameter of the Raman pump in response to this transmitted information.
    Type: Application
    Filed: April 27, 2015
    Publication date: October 29, 2015
    Inventors: WAYNE S. PELOUCH, STEPHEN MICHAEL WEBB, JOHN G. ELLISON
  • Publication number: 20150171958
    Abstract: A submarine optical repeater includes a submarine amplifier module, which further includes a pumping laser module and an optical detector module. The pumping laser module generates optical amplifications within an optical cable, and, in the case of a fault in the optical cable, the optical detector module detects at least one characteristic of an optical signal caused by the fault in the optical cable. This configuration then identifies a particular signal characteristic that indicates a fault within the optical cable.
    Type: Application
    Filed: December 17, 2013
    Publication date: June 18, 2015
    Inventors: Stephen Michael Webb, Wayne S. Pelouch, DO-IL Chang, John G. Ellison
  • Publication number: 20150110143
    Abstract: An assembly that includes a laser diode and a driver circuit that operates to give the assembly an adjustable impedance. The driver circuit adjusts impedance by repeatedly alternating between two operational phases. In one operational phase, current is primarily or fully supplied through the laser diode using a first current path being from the first supply node, to the laser diode, and into the second supply node. In the other operational phase, current is supplied through the laser diode using a recirculating second current path. The current through the laser diode increases during the first operational phase, and decays during the second operational phase. For a given applied voltage level between the first and second supply nodes, the duty cycle of the first and second operational phases may be adjusted so that the current through the laser diode is approximately a target current.
    Type: Application
    Filed: March 7, 2014
    Publication date: April 23, 2015
    Inventors: GERHARD WILLEM VAN LOCHEM, STEPHEN MICHAEL WEBB
  • Publication number: 20140268308
    Abstract: The adjustment of tilt in an optical signal path of a repeater. The repeater includes an optical pump that optically powers a rare-Earth doped fiber amplifier, which amplifies the optical signal. The optical signal path also includes Raman gain stage implemented in a previous optical fiber span in the optical signal path, and which contributes tilt with respect to wavelength. Adjusting the Raman gain and/or the rare-Earth doped gain also adjusts the combined tilt contributed by these gain stages. However, the rare-Earth doped gain operates at least partially in the saturated regime, thereby stabilizing the gain at the output of the rare-Earth doped amplifier. Thus tilt control may be employed by adjusting optical pump power with reduced effect on overall gain.
    Type: Application
    Filed: March 7, 2014
    Publication date: September 18, 2014
    Inventors: WAYNE S. PELOUCH, DO-IL CHANG, STEPHEN MICHAEL WEBB
  • Patent number: 8442405
    Abstract: A polarization mode dispersion compensator that includes two stages, one for reducing or eliminating first order polarization mode dispersion of an optical signal, and second stage for reducing or eliminating higher order polarization mode dispersion of the optical signal. In each stage, the polarization is adjusted so as to reduce polarization mode dispersion. Based on the power levels of various polarization states generated at the second polarization controller, the optical signal to noise ratio may be estimated. Furthermore, based on the amount of adjustment used to control the polarization controllers and the differential group delay, the polarization mode dispersion may be estimated.
    Type: Grant
    Filed: November 16, 2010
    Date of Patent: May 14, 2013
    Assignee: Xtera Communications, Inc.
    Inventors: John G. Ellison, Stephen Michael Webb, David Winterburn, Stephen Desbruslais
  • Patent number: 8406637
    Abstract: A system and method are provided for controlling the pre-emphasis applied to an optical signal, in which the output level of individual transmitters is controlled in order to reach a pre-defined desired value of a quality metric. Transmitters are able to adjust their output power without external control in such a way as to optimise the power distribution across the system.
    Type: Grant
    Filed: May 27, 2008
    Date of Patent: March 26, 2013
    Assignee: Xtera Communications, Inc.
    Inventors: Stephen Michael Webb, David Winterburn, Stephen Debruslais
  • Patent number: 8380064
    Abstract: A device and method for depolarising the total field of a wavelength division multiplexed (WDM) signal is provided. A polarization maintaining multiplexor combines a plurality of optical signals to form a polarized multiplexed signal. The multiplexed signal is then passed through a differential group delay (DGD) element adapted to modify the polarization state of one or more optical source signals within the multiplexed signal and thereby to at least partially depolarise the multiplexed signal.
    Type: Grant
    Filed: March 15, 2007
    Date of Patent: February 19, 2013
    Assignee: Xtera Communications, Inc.
    Inventors: Stephen Desbruslais, Richard Oberland, Stuart Robert Barnes, Stephen Michael Webb
  • Patent number: 8355128
    Abstract: A feedforward controller for controlling the polarization state of an optical signal. The feedforward controller includes an optical input for receiving an optical input signal having an input polarization state, an optical output for transmitting an optical output signal having an output polarization state, a polarization controller coupled to the optical input and the optical output, and a transfer function determiner for determining a characteristic polarization transfer function of the feedforward controller from the input and output polarization states. The polarization controller is adapted to modify the polarization state of light passing therethrough in dependence on the characteristic polarization transfer function of the feedforward controller.
    Type: Grant
    Filed: June 11, 2010
    Date of Patent: January 15, 2013
    Assignee: Xtera Communications Inc.
    Inventors: Stephen Michael Webb, John F Ellison
  • Publication number: 20120287949
    Abstract: Polarization multiplexing by encoding data using a return-to-zero format, and by interleaving the constituent orthogonal polarization components such that the data-carrying portion of the bit window from one orthogonal polarization component occupies the zero portion of the bit window for the other orthogonal polarization component.
    Type: Application
    Filed: May 10, 2012
    Publication date: November 15, 2012
    Applicant: XTERA COMMUNICATIONS, INC.
    Inventor: Stephen Michael Webb
  • Publication number: 20120121254
    Abstract: A polarization mode dispersion compensator that includes two stages, one for reducing or eliminating first order polarization mode dispersion of an optical signal, and second stage for reducing or eliminating higher order polarization mode dispersion of the optical signal. In each stage, the polarization is adjusted so as to reduce polarization mode dispersion. Based on the power levels of various polarization states generated at the second polarization controller, the optical signal to noise ratio may be estimated. Furthermore, based on the amount of adjustment used to control the polarization controllers and the differential group delay, the polarization mode dispersion may be estimated.
    Type: Application
    Filed: November 16, 2010
    Publication date: May 17, 2012
    Applicant: Xtera Communications
    Inventors: John G. Ellison, Stephen Michael Webb, David Winterburn, Stephen Desbruslais
  • Patent number: 7995929
    Abstract: An optical data receiver comprises an optical input for receiving optical data signals, an optical sputter for splitting the optical signals into first and second receiver arms, an optical filter in the first receiver arm, means for increasing an intensity ratio of optical signal strength in the first receiver arm to optical signal strength in the second receiver arm, means for adjusting a phase difference between the first and second receiver arms, and an optical coupler for coupling outputs of the first and second receiver arms to a photodetector. The receiver of the present invention selectively filters a carrier component of received optical data signals, adjusts the relative strength of the carrier component and the received signal and then recombines them. In this way efficient optical transmission can be achieved with direct detection at the receiver, without the need for a complex receiver design including a local oscillator.
    Type: Grant
    Filed: August 9, 2005
    Date of Patent: August 9, 2011
    Assignee: Xtera Communications Ltd.
    Inventors: Stephen Michael Webb, Stephen Desbrulais
  • Publication number: 20100322627
    Abstract: A device and method for depolarising the total field of a wavelength division multiplexed (WDM) signal is provided. A polarisation maintaining multiplexor combines a plurality of optical signals to form a polarised multiplexed signal. The multiplexed signal is then passed through a differential group delay (DGD) element adapted to modify the polarisation state of one or more optical source signals within the multiplexed signal and thereby to at least partially depolarise the multiplexed signal.
    Type: Application
    Filed: March 15, 2007
    Publication date: December 23, 2010
    Inventors: Stephen Desbruslais, Richard Oberland, Stuart Barnes, Stephen Michael Webb
  • Publication number: 20100315640
    Abstract: A feedforward controller for controlling the polarization state of an optical signal. The feedforward controller includes an optical input for receiving an optical input signal having an input polarization state, an optical output for transmitting an optical output signal having an output polarization state, a polarization controller coupled to the optical input and the optical output, and a transfer function determiner for determining a characteristic polarization transfer function of the feedforward controller from the input and output polarization states. The polarization controller is adapted to modify the polarization state of light passing therethrough in dependence on the characteristic polarization transfer function of the feedforward controller.
    Type: Application
    Filed: June 11, 2010
    Publication date: December 16, 2010
    Applicant: XTERA COMMUNICATION INC.
    Inventors: Stephen Michael Webb, John Ellison
  • Patent number: 7822348
    Abstract: A method, apparatus, and computer program product are provided for optimizing the pulse shape of optical signals output from an optical transmitter. The optical transmitter includes an optical modulator controlled by a bias voltage and a signal drive level, wherein the bias voltage and signal drive level are controlled automatically in a systematic way in dependence on one another to adapt the pulse shape of an optical output signal for optimal transmission over a transmission line.
    Type: Grant
    Filed: March 7, 2006
    Date of Patent: October 26, 2010
    Assignee: Xtera Communications, Inc.
    Inventors: Stephen Michael Webb, Richard Oberland