Patents by Inventor Stephen Nash

Stephen Nash has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160166305
    Abstract: Cryotherapeutic systems with features that can facilitate pressure relief in the event of exhaust-passage blockage and associated devices, systems, and methods are disclosed herein. A cryotherapeutic system configured in accordance with a particular embodiment can include an elongated shaft having a distal portion and a pressure-relief portion proximal to the distal portion. The cryotherapeutic system can further include a supply lumen, an exhaust passage, and a balloon configured to receive refrigerant from the supply lumen and to exhaust refrigerant to the exhaust passage. The pressure-relief portion can be configured to release refrigerant from the exhaust passage when a pressure of refrigerant in the exhaust passage exceeds a threshold pressure less than a pressure rating of the balloon. The pressure-relief portion, for example, can include a rupture element configured to rupture at about the threshold pressure.
    Type: Application
    Filed: December 14, 2015
    Publication date: June 16, 2016
    Inventors: Stephen Nash, Grace Kelly
  • Patent number: 9327123
    Abstract: Endovascular nerve monitoring devices and associated systems and methods are disclosed herein. A nerve monitoring system configured in accordance with a particular embodiment of the present technology can include a shaft having a proximal portion and a distal portion and a nerve monitoring assembly at the distal portion. The shaft is configured to locate the distal portion intravascularly at a treatment site. The nerve monitoring assembly can include a bipolar stimulation electrode array and a bipolar recording electrode array disposed distal to the bipolar stimulation electrode assembly.
    Type: Grant
    Filed: November 6, 2012
    Date of Patent: May 3, 2016
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Dwayne S. Yamasaki, Bryan Courtney, Wenjeng Li, Kevin Mauch, Kevin McFarlin, Gabriel Brennan, David Gannon, David Hobbins, Brian Kelly, Stephen Nash, Matthew Bonner, Sean Ward
  • Patent number: 9309022
    Abstract: A package includes a box having an interior volume and a first pocket disposed at a first corner of the box. The first pocket includes a lip configured for a finger of a user to be inserted therein for removal of the package from a storage unit.
    Type: Grant
    Filed: September 5, 2014
    Date of Patent: April 12, 2016
    Assignee: Medtronic Vascular, Inc.
    Inventors: Stephen Nash, David Clarke
  • Publication number: 20160038212
    Abstract: Catheter apparatuses, systems, and methods for cryogenically modulating neural structures of the renal plexus by intravascular access are disclosed herein. One aspect of the present application, for example, is directed to apparatuses, systems, and methods that incorporate a catheter treatment device comprising an elongated shaft. The elongated shaft is sized and configured to deliver a cryo-applicator to a renal artery via an intravascular path. Cryogenic renal neuromodulation may be achieved via application of cryogenic temperatures to modulate neural fibers that contribute to renal function, or of vascular structures that feed or perfuse the neural fibers.
    Type: Application
    Filed: July 15, 2015
    Publication date: February 11, 2016
    Applicant: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Eric Ryba, Naomi Buckley, Benjamin J. Clark, Danny Donovan, Luke Hughes, Brian Kelly, Gwenda McMullin, Karun D. Naga, Stephen Nash, Roman Turovskiy, Lana Wooley, Denise Zarins, Mark Gelfand, Mark S. Leung
  • Patent number: 9241752
    Abstract: Cryotherapeutic systems with features that can facilitate pressure relief in the event of exhaust-passage blockage and associated devices, systems, and methods are disclosed herein. A cryotherapeutic system configured in accordance with a particular embodiment can include an elongated shaft having a distal portion and a pressure-relief portion proximal to the distal portion. The cryotherapeutic system can further include a supply lumen, an exhaust passage, and a balloon configured to receive refrigerant from the supply lumen and to exhaust refrigerant to the exhaust passage. The pressure-relief portion can be configured to release refrigerant from the exhaust passage when a pressure of refrigerant in the exhaust passage exceeds a threshold pressure less than a pressure rating of the balloon. The pressure-relief portion, for example, can include a rupture element configured to rupture at about the threshold pressure.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: January 26, 2016
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Stephen Nash, Grace Kelly
  • Publication number: 20150342660
    Abstract: A surgical instrument includes an outer shaft defining a passageway. An inner shaft is disposed within the passageway and defines a lumen. An expandable structure has a first end coupled to a second end of the outer shaft and a second end coupled to a second end of the inner shaft. The expandable member defines a chamber. A delivery shaft includes a first end positioned within the passageway and a second end positioned within the chamber. The delivery shaft defines a channel configured to deliver a coolant out of an opening in the second end of the delivery shaft and into the chamber to move the expandable structure from an unexpanded configuration to an expanded configuration. A variable exhaust valve is in communication with the passageway and is configured to regulate pressure within the chamber. Systems and methods are disclosed.
    Type: Application
    Filed: May 28, 2014
    Publication date: December 3, 2015
    Inventor: STEPHEN NASH
  • Publication number: 20150251798
    Abstract: A package includes a box having an interior volume and a first pocket disposed at a first corner of the box. The first pocket includes a lip configured for a finger of a user to be inserted therein for removal of the package from a storage unit.
    Type: Application
    Filed: September 5, 2014
    Publication date: September 10, 2015
    Inventors: Stephen Nash, David Clarke
  • Patent number: 9095321
    Abstract: A cryotherapeutic device having an integral multi-helical balloon section and methods of making the same. A method of forming the cryotherapeutic device can include forming an extruded integral shaft having first and second substantially parallel lumens. The method can further include twisting a distal section of the shaft such that the first and second lumens form intertwined helical portions. The first and second helical portions can be plastically enlarged to form an inflatable body configured to deliver therapeutically effective cryogenic cooling to a treatment site.
    Type: Grant
    Filed: November 21, 2012
    Date of Patent: August 4, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Jim Phelan, Stephen Nash
  • Patent number: 9060754
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment includes an elongated shaft and a cooling assembly at a distal portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site within or otherwise proximate a renal artery. The cryotherapeutic device can further include a supply lumen configured to carry liquid refrigerant toward the cooling assembly. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when in a deployed state.
    Type: Grant
    Filed: October 23, 2011
    Date of Patent: June 23, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Seamus Ledwith, Gwenda McMullin, Karun D. Naga, Stephen Nash, Eric Ryba, Fiachra Sweeney, Vincenzo Tilotta, Roman Turovskiy, Lana Woolley, Denise Zarins, Mark Gelfand, Mark S. Leung, Barry Mullins
  • Publication number: 20150148791
    Abstract: Cryotherapeutic systems and cryotherapeutic-system components configured for renal neuromodulation are disclosed herein. A cryotherapeutic system configured in accordance with a particular embodiment of the present technology can include a console having a cartridge housing, a cartridge connector adjacent to the cartridge housing, and a supply passage fluidly connected to the cartridge connector. The console can further include a supply valve along the supply passage and a control assembly including a supply-valve actuator and a user interface. The supply-valve actuator can be operably connected to the supply valve, and the control assembly can be configured to signal the supply-valve actuator to open the supply valve in response to a signal from the user interface.
    Type: Application
    Filed: November 2, 2012
    Publication date: May 28, 2015
    Applicant: Medtronic Ardian Luxemborug S.a.r.l.
    Inventors: Matthew Birdsall, Gabriel Brennan, Anthony Bertrand, Brian Donlon, Kara Harrington, Brian Kelly, Micheal Moriarty, Stephen Nash, Elger Oberwelz, Fiachra Sweeney, Roman Turovskiy
  • Patent number: 8998148
    Abstract: A locomotive warning system includes an acoustical warning subsystem configured to emit variably directed sound. A controller subsystem is responsive to an initiation command and is configured to trigger the acoustical warning subsystem to begin a sounding sequence when the initiation command is received at a first directivity angle and to continue the sound blast sequence at increasing directivity angles for a pre-establish time and/or distance traveled.
    Type: Grant
    Filed: June 13, 2012
    Date of Patent: April 7, 2015
    Assignee: Foster-Miller, Inc.
    Inventors: Basant K. Parida, Abdullatif K. Zaouk, Jason Ross, Grant Stephen Nash
  • Patent number: 8986375
    Abstract: A transcatheter valve prosthesis includes an expandable tubular stent, a prosthetic valve within the stent, and an anti-paravalvular leakage component coupled to and encircling the stent which includes a plurality of self-expanding struts and an annular sealing membrane. Each strut has a first end coupled to a distal end of the stent and a second end not coupled to the stent. Each anti-paravalvular leakage component is moveable between a compressed configuration and a deployed configuration. In the compressed configuration, each strut extends distally away from the distal end of the stent. In the deployed configuration, each strut extends proximally away from the distal end of the stent. In an embodiment hereof, the deployed strut has a C-shape and is twisted such that the C-shape lies in a plane substantially along or tangential with the outer surface of the stent. In another embodiment hereof, the deployed strut is rolled-up and extends radially away from the outer surface of the stent.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: March 24, 2015
    Assignee: Medtronic, Inc.
    Inventors: Kshitija Garde, Philip Haarstad, Igor Kovalsky, Stephen Nash, Gianfranco Pellegrini, Finn Rinne, Matthew Rust, Jeffrey Sandstrom, Padraig Savage, William Steinberg
  • Patent number: 8945107
    Abstract: Neuromodulation cryotherapeutic devices and associated systems and methods are disclosed herein. A cryotherapeutic device configured in accordance with a particular embodiment of the present technology can include an elongated shaft having distal portion and a supply lumen along at least a portion of the shaft. The shaft can be configured to locate the distal portion intravascularly at a treatment site proximate a renal artery or renal ostium. The supply lumen can be configured to receive a liquid refrigerant. The cryotherapeutic device can further include a cooling assembly at the distal portion of the shaft. The cooling assembly can include an applicator in fluid communication with the supply lumen and configured to deliver cryotherapeutic cooling to nerves proximate the target site when the cooling assembly is in a deployed state.
    Type: Grant
    Filed: October 23, 2011
    Date of Patent: February 3, 2015
    Assignee: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Naomi Buckley, Benjamin J. Clark, Michael Cummins, Danny Donovan, Luke Hughes, Brian Kelly, Gary Kelly, Grace Kelly, John Kelly, Seamus Ledwith, Gwenda McMullin, Karun D. Naga, Stephen Nash, Francesco Piccagli, Eric Ryba, Fiachra Sweeney, Vincenzo Tilotta, Roman Turovskiy, Lana Woolley, Denise Zarins, Mark Gelfand, Mark S. Leung, Barry Mullins
  • Publication number: 20150010422
    Abstract: Methods for manufacturing an endovascular stent having channel(s) formed therein for containing a therapeutic material. A molding and sintering process forms a thin-walled tubular component having a tubular core structure encapsulated therein. Portions of the thin-walled tubular component are removed to form at least a portion of the endovascular stent in a pattern corresponding to that of the tubular core structure such that the tubular core structure or corresponding channel(s) left thereby are captured within a wall of the formed stent. The tubular core structure is removed to leave a corresponding channel(s) in its stead. A plurality of holes is formed in the stent wall for filling the stent channel(s) with the therapeutic material and for eluting the therapeutic material therefrom.
    Type: Application
    Filed: July 3, 2013
    Publication date: January 8, 2015
    Inventor: Stephen Nash
  • Publication number: 20140277419
    Abstract: A transcatheter valve prosthesis includes an expandable tubular stent, a prosthetic valve within the stent, and an anti-paravalvular leakage component coupled to and encircling the stent which includes a plurality of self-expanding struts and an annular sealing membrane. Each strut has a first end coupled to a distal end of the stent and a second end not coupled to the stent. Each anti-paravalvular leakage component is moveable between a compressed configuration and a deployed configuration. In the compressed configuration, each strut extends distally away from the distal end of the stent. In the deployed configuration, each strut extends proximally away from the distal end of the stent. In an embodiment hereof, the deployed strut has a C-shape and is twisted such that the C-shape lies in a plane substantially along or tangential with the outer surface of the stent. In another embodiment hereof, the deployed strut is rolled-up and extends radially away from the outer surface of the stent.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: MEDTRONIC, INC.
    Inventors: Kshitija Garde, Philip Haarstad, Igor Kovalsky, Stephen Nash, Michael Krivoruchko, Gianfranco Pellegrini, Finn Rinne, Matthew Rust, Jeffrey Sandstrom, Padraig Savage, Adam Shipley, William Steinberg
  • Publication number: 20130289549
    Abstract: Cryotherapeutic systems with features that can facilitate pressure relief in the event of exhaust-passage blockage and associated devices, systems, and methods are disclosed herein. A cryotherapeutic system configured in accordance with a particular embodiment can include an elongated shaft having a distal portion and a pressure-relief portion proximal to the distal portion. The cryotherapeutic system can further include a supply lumen, an exhaust passage, and a balloon configured to receive refrigerant from the supply lumen and to exhaust refrigerant to the exhaust passage. The pressure-relief portion can be configured to release refrigerant from the exhaust passage when a pressure of refrigerant in the exhaust passage exceeds a threshold pressure less than a pressure rating of the balloon. The pressure-relief portion, for example, can include a rupture element configured to rupture at about the threshold pressure.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Applicant: Medtronic Ardian Luxembourg S.a.r.l.
    Inventors: Stephen Nash, Grace Kelly
  • Publication number: 20120318932
    Abstract: A locomotive warning system includes an acoustical warning subsystem configured to emit variably directed sound. A controller subsystem is responsive to an initiation command and is configured to trigger the acoustical warning subsystem to begin a sounding sequence when the initiation command is received at a first directivity angle and to continue the sound blast sequence at increasing directivity angles for a pre-establish time and/or distance traveled.
    Type: Application
    Filed: June 13, 2012
    Publication date: December 20, 2012
    Inventors: Basant K. Parida, Abdullatif K. Zaouk, Jason Ross, Grant Stephen Nash
  • Patent number: D724427
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: March 17, 2015
    Assignee: Medtronic Vascular, Inc.
    Inventors: Stephen Nash, David Clarke
  • Patent number: D724938
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: March 24, 2015
    Assignee: Medtronic Vascular, Inc.
    Inventors: Stephen Nash, David Clarke
  • Patent number: D732383
    Type: Grant
    Filed: March 6, 2014
    Date of Patent: June 23, 2015
    Assignee: Medtronic Vascular, Inc.
    Inventors: Stephen Nash, David Clarke