Patents by Inventor Stephen Osborn
Stephen Osborn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12044781Abstract: Example implementations may relate to determining a strategy for a drop process associated with a light detection and ranging (LIDAR) device. In particular, the LIDAR device could emit light pulses and detect return light pulses, and could generate a set of data points representative of the detected return light pulses. The drop process could involve a computing system discarding data point(s) of the set and/or preventing emission of light pulse(s) by the LIDAR device. Accordingly, the computing system could detect a trigger to engage in the drop process, and may responsively (i) use information associated with the environment around the vehicle, operation of the vehicle, and/or operation of the LIDAR device as a basis to determine the strategy for the drop process, and (ii) engage in the drop process in accordance with the determined strategy.Type: GrantFiled: February 9, 2023Date of Patent: July 23, 2024Assignee: Waymo LLCInventors: Blaise Gassend, Scott McCloskey, Stephen Osborn, Nicholas Armstrong-Crews
-
Publication number: 20230184955Abstract: Example implementations may relate to determining a strategy for a drop process associated with a light detection and ranging (LIDAR) device. In particular, the LIDAR device could emit light pulses and detect return light pulses, and could generate a set of data points representative of the detected return light pulses. The drop process could involve a computing system discarding data point(s) of the set and/or preventing emission of light pulse(s) by the LIDAR device. Accordingly, the computing system could detect a trigger to engage in the drop process, and may responsively (i) use information associated with the environment around the vehicle, operation of the vehicle, and/or operation of the LIDAR device as a basis to determine the strategy for the drop process, and (ii) engage in the drop process in accordance with the determined strategy.Type: ApplicationFiled: February 9, 2023Publication date: June 15, 2023Inventors: Blaise Gassend, Scott McCloskey, Stephen Osborn, Nicholas Armstrong-Crews
-
Patent number: 11604284Abstract: Example implementations may relate to determining a strategy for a drop process associated with a light detection and ranging (LIDAR) device. In particular, the LIDAR device could emit light pulses and detect return light pulses, and could generate a set of data points representative of the detected return light pulses. The drop process could involve a computing system discarding data point(s) of the set and/or preventing emission of light pulse(s) by the LIDAR device. Accordingly, the computing system could detect a trigger to engage in the drop process, and may responsively (i) use information associated with the environment around the vehicle, operation of the vehicle, and/or operation of the LIDAR device as a basis to determine the strategy for the drop process, and (ii) engage in the drop process in accordance with the determined strategy.Type: GrantFiled: May 6, 2019Date of Patent: March 14, 2023Assignee: Waymo LLCInventors: Blaise Gassend, Scott McCloskey, Stephen Osborn, Nicholas Armstrong-Crews
-
Patent number: 11543427Abstract: Wind sensor devices, systems, and methods are provided in accordance with various embodiments. The wind sensor device may include: a first support ring; a second support ring; a first transducer coupled with the first support ring; a second transducer coupled with the first support ring; a third transducer coupled with the second support ring; and a fourth transducer coupled with the second support ring. A center of a face of the first transducer, a center of a face of the second transducer, a center of a face of the third transducer, and a center of a face of the fourth transducer may form four vertices of a tetrahedron, which may include an equilateral tetrahedron. The first transducer, the second transducer, the third transducer, and the fourth transducer are generally directed away from a center of the tetrahedron.Type: GrantFiled: March 4, 2022Date of Patent: January 3, 2023Assignee: Anemoment LLCInventors: Timothy Osborn, Stephen Osborn, Mark Henault
-
Publication number: 20220299541Abstract: Wind sensor devices, systems, and methods are provided in accordance with various embodiments. The wind sensor device may include: a first support ring; a second support ring; a first transducer coupled with the first support ring; a second transducer coupled with the first support ring; a third transducer coupled with the second support ring; and a fourth transducer coupled with the second support ring. A center of a face of the first transducer, a center of a face of the second transducer, a center of a face of the third transducer, and a center of a face of the fourth transducer may form four vertices of a tetrahedron, which may include an equilateral tetrahedron. The first transducer, the second transducer, the third transducer, and the fourth transducer are generally directed away from a center of the tetrahedron.Type: ApplicationFiled: March 4, 2022Publication date: September 22, 2022Inventors: Timothy Osborn, Stephen Osborn, Mark Henault
-
Publication number: 20220187448Abstract: Computing devices, systems, and methods described in various embodiments herein may relate to a light detection and ranging (lidar) system. An example computing device could include a controller having at least one processor and at least one memory. The at least one processor is configured to execute program instructions stored in the at least one memory so as to carry out operations. The operations include receiving information identifying an environmental condition surrounding a vehicle, the environmental condition being at least one of fog, mist, snow, dust, or rain. The operations also include determining a range of interest within a field of view of the lidar system based on the received information. The operations also include adjusting at least one of: a return light detection time period, sampling rate, or filtering threshold, for at least a portion of the field of view based on the determined range of interest.Type: ApplicationFiled: July 15, 2021Publication date: June 16, 2022Inventors: Mark Alexander Shand, Lucas Peeters, Rui Wu, Blaise Gassend, Stephen Osborn, Paul Karplus, Georges Goetz
-
Publication number: 20220155450Abstract: One example method involves repeatedly scanning a range of angles in a field-of-view (FOV) of a light detection and ranging (LIDAR) device. The method also involves detecting a plurality of light pulses intercepted for each scan of the range of angles. The method also involves comparing a first scan of the range of angles with a second scan subsequent to the first scan. The method also involves detecting onset of a saturation recovery period of the light detector during the first scan or the second scan based on the comparison.Type: ApplicationFiled: March 5, 2020Publication date: May 19, 2022Inventors: Blaise GASSEND, Stephen OSBORN, Peter MORTON
-
Publication number: 20220155456Abstract: The present disclosure relates to light detection and ranging (LIDAR) devices and related methods of their use. An example LIDAR device includes a transmitter configured to transmit one or more light pulses into an environment of the LIDAR device via a transmit optical path. The LIDAR device also includes a detector configured to detect a first portion of the one or more transmitted light pulses and a second portion of the one or more transmitted light pulses, such that the detector receives at a first time the first portion of the one or more transmitted light pulses via an internal optical path within the LIDAR device and receives at a second time the second portion of the one or more transmitted light pulses via reflection by one or more objects in the environment of the LIDAR device. The second time occurs after the first time.Type: ApplicationFiled: March 4, 2020Publication date: May 19, 2022Inventors: Stephen Osborn, Blaise Gassend, Pierre-Yves Droz, Luke Wachter, Ionut Iordache
-
Patent number: 11268974Abstract: Wind sensor devices, systems, and methods are provided in accordance with various embodiments. The wind sensor device may include: a first support ring; a second support ring; a first transducer coupled with the first support ring; a second transducer coupled with the first support ring; a third transducer coupled with the second support ring; and a fourth transducer coupled with the second support ring. A center of a face of the first transducer, a center of a face of the second transducer, a center of a face of the third transducer, and a center of a face of the fourth transducer may form four vertices of a tetrahedron, which may include an equilateral tetrahedron. The first transducer, the second transducer, the third transducer, and the fourth transducer are generally directed away from a center of the tetrahedron.Type: GrantFiled: July 23, 2021Date of Patent: March 8, 2022Assignee: Anemoment LLCInventors: Timothy Osborn, Stephen Osborn, Mark Henault
-
Publication number: 20210349120Abstract: Wind sensor devices, systems, and methods are provided in accordance with various embodiments. The wind sensor device may include: a first support ring; a second support ring; a first transducer coupled with the first support ring; a second transducer coupled with the first support ring; a third transducer coupled with the second support ring; and a fourth transducer coupled with the second support ring. A center of a face of the first transducer, a center of a face of the second transducer, a center of a face of the third transducer, and a center of a face of the fourth transducer may form four vertices of a tetrahedron, which may include an equilateral tetrahedron. The first transducer, the second transducer, the third transducer, and the fourth transducer are generally directed away from a center of the tetrahedron.Type: ApplicationFiled: July 23, 2021Publication date: November 11, 2021Inventors: Timothy Osborn, Stephen Osborn, Mark Henault
-
Publication number: 20200355831Abstract: Example implementations may relate to determining a strategy for a drop process associated with a light detection and ranging (LIDAR) device. In particular, the LIDAR device could emit light pulses and detect return light pulses, and could generate a set of data points representative of the detected return light pulses. The drop process could involve a computing system discarding data point(s) of the set and/or preventing emission of light pulse(s) by the LIDAR device. Accordingly, the computing system could detect a trigger to engage in the drop process, and may responsively (i) use information associated with the environment around the vehicle, operation of the vehicle, and/or operation of the LIDAR device as a basis to determine the strategy for the drop process, and (ii) engage in the drop process in accordance with the determined strategy.Type: ApplicationFiled: May 6, 2019Publication date: November 12, 2020Inventors: Blaise Gassend, Scott McCloskey, Stephen Osborn, Nicholas Armstrong-Crews
-
Patent number: 10551406Abstract: Methods, systems, and devices for acoustic structural reflection interference mitigation are provided in accordance with various embodiments. For example, some embodiments may provide for structural reflection interference mitigation for compact three-dimensional ultrasonic anemometers. Some embodiments include a method that may include transmitting a first acoustic signal from a first acoustic transmitter. At least a first portion of the first acoustic signal from the first acoustic transmitter may be hindered from being received at a first acoustic receiver. At least a second portion of the first acoustic signal from the first acoustic transmitter may be received at the first acoustic receiver along an acoustic propagation path. In some embodiments, the first acoustic transmitter may include a wide-beam transmitter. Some embodiments may utilize four wide-beam transducers positioned at apices of a tetrahedron.Type: GrantFiled: April 19, 2018Date of Patent: February 4, 2020Assignee: Anemoment LLCInventors: Stephen Osborn, Mark Henault, Elizabeth Osborn, Stefan Elsener
-
Publication number: 20180313865Abstract: Methods, systems, and devices for acoustic structural reflection interference mitigation are provided in accordance with various embodiments. For example, some embodiments may provide for structural reflection interference mitigation for compact three-dimensional ultrasonic anemometers. Some embodiments include a method that may include transmitting a first acoustic signal from a first acoustic transmitter. At least a first portion of the first acoustic signal from the first acoustic transmitter may be hindered from being received at a first acoustic receiver. At least a second portion of the first acoustic signal from the first acoustic transmitter may be received at the first acoustic receiver along an acoustic propagation path. In some embodiments, the first acoustic transmitter may include a wide-beam transmitter. Some embodiments may utilize four wide-beam transducers positioned at apices of a tetrahedron.Type: ApplicationFiled: April 19, 2018Publication date: November 1, 2018Inventors: Stephen Osborn, Mark Henault, Elizabeth Osborn, Stefan Elsener
-
Publication number: 20060094046Abstract: Methods for identifying nucleic acid molecules and polypeptides that participate in angiogenesis and tumorigenesis, and associated methods and products are provided.Type: ApplicationFiled: October 17, 2005Publication date: May 4, 2006Inventors: Arie Abo, Robert Stull, Daniel Chin, Stephen Osborn, Scot Kennedy
-
Patent number: D436133Type: GrantFiled: March 4, 1999Date of Patent: January 9, 2001Assignee: The Coca-Cola CompanyInventors: Stephen A. Osborn, Rex M. Baker, III, Paul Albert Carlson, Tran Q. Minh, Alejandro Reynal
-
Patent number: D427809Type: GrantFiled: April 7, 1998Date of Patent: July 11, 2000Assignee: Trilogy Plastics, Inc.Inventors: Stephen A. Osborn, Rex M. Baker, III