Patents by Inventor Stephen P. A. Fodor

Stephen P. A. Fodor has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11535882
    Abstract: The present disclosure provide compositions, methods and kits for generating a set of combinatorial barcodes, and uses thereof for barcoding samples such as single cells or genomic DNA fragments. Some embodiments disclosed herein provide compositions comprising a set of component barcodes for producing a set of combinatorial barcodes. The set of component barcodes can comprise, for example, n×m unique component barcodes, wherein n and m are integers, each of the component barcodes comprises: one of n unique barcode subunit sequences; and one or two linker sequences or the complements thereof, wherein the component barcodes are configured to connect to each other through the one or two linker sequences or the complements thereof to produce a set of combinatorial barcodes.
    Type: Grant
    Filed: March 29, 2016
    Date of Patent: December 27, 2022
    Assignee: Becton, Dickinson and Company
    Inventors: Glenn Fu, Stephen P. A. Fodor
  • Publication number: 20220389410
    Abstract: This disclosure provides for devices, methods, and systems for generating a plurality of droplets within a collecting container at an extremely high rate (e.g., of at least 1 million droplets per minute, etc.), the plurality of droplets generated from an aqueous mixture comprising a set of single cells and a set of functionalized particles configured for a single cell assay. Upon generation, the plurality of droplets can be stabilized in position within a region of the collecting container, thereby providing a single-tube workflow for single cell analyses. Further, compositions implemented are structured to allow for overloading of partitions with functionalized particles, such that partitioned single-cells are co-localized with a subset of functionalized particles in a manner that allows for discernable tagging and downstream analyses.
    Type: Application
    Filed: June 7, 2022
    Publication date: December 8, 2022
    Inventors: Eleen Yee Lam Shum, Janice Hoiyi Lai, Hei Mun Christina Fan, Stephen P. A. Fodor
  • Patent number: 11447817
    Abstract: The inventions cover systems and methods for generation of emulsions having suitable clarity without requiring refractive index matching between emulsion components. Systems can include: a substrate including a set of openings; a reservoir facing the substrate at a first side and containing a sample fluid configured for droplet formation upon interacting with the set of openings of the substrate; and a collecting container facing the substrate at a second side and containing a set of fluid layers configured with a density gradient and suitable immiscibility characteristics. One or more components of the system(s) can support methods for emulsion generation, in relation to enabling interactions between multiple continuous phases and a dispersed droplet phase to generate clear emulsions. Applications of the inventions(s) can include performance of droplet-based digital PCR in an improved manner (e.g., without requiring implementation of correction factors based upon Poisson statistics).
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: September 20, 2022
    Assignee: Enumerix, Inc.
    Inventors: Hei Mun Christina Fan, Eleen Yee Lam Shum, Janice Hoiyi Lai, Stephen P. A. Fodor
  • Publication number: 20220280941
    Abstract: This disclosure provides for devices, methods, and systems for generating a plurality of droplets within a collecting container at an extremely high rate (e.g., of at least 1 million droplets per minute, etc.), each of the plurality of droplets comprising an aqueous mixture for a digital analysis, wherein upon generation, the plurality of droplets is stabilized in position within a region of the collecting container. The inventions enable partitioning of samples for digital analyses at unprecedented rates, where readout of signals from targets within such partitions can still be achieved in accordance with various assays.
    Type: Application
    Filed: March 4, 2022
    Publication date: September 8, 2022
    Inventors: Hei Mun Christina Fan, Janice Hoiyi Lai, Sixing Li, Stephen P.A. Fodor, Eleen Yee Lam Shum
  • Publication number: 20220283174
    Abstract: This disclosure provides for devices, methods, and systems for generating a plurality of droplets within a collecting container at an extremely high rate (e.g., of at least 1 million droplets per minute, etc.), each of the plurality of droplets comprising an aqueous mixture for a digital analysis, wherein upon generation, the plurality of droplets is stabilized in position within a region of the collecting container. The inventions enable partitioning of samples for digital analyses at unprecedented rates, where readout of signals from targets within such partitions can still be achieved in accordance with various assays.
    Type: Application
    Filed: April 1, 2022
    Publication date: September 8, 2022
    Inventors: Hei Mun Christina Fan, Janice Hoiyi Lai, Sixing Li, Stephen P.A. Fodor, Eleen Yee Lam Shum
  • Publication number: 20220186302
    Abstract: The inventions cover systems and methods for generation of emulsions having suitable clarity without requiring refractive index matching between emulsion components. Systems can include: a substrate including a set of openings; a reservoir facing the substrate at a first side and containing a sample fluid configured for droplet formation upon interacting with the set of openings of the substrate; and a collecting container facing the substrate at a second side and containing a set of fluid layers configured with a density gradient and suitable immiscibility characteristics. One or more components of the system(s) can support methods for emulsion generation, in relation to enabling interactions between multiple continuous phases and a dispersed droplet phase to generate clear emulsions. Applications of the inventions(s) can include performance of droplet-based digital PCR in an improved manner (e.g., without requiring implementation of correction factors based upon Poisson statistics).
    Type: Application
    Filed: December 23, 2021
    Publication date: June 16, 2022
    Inventors: Hei Mun Christina FAN, Eleen Yee Lam SHUM, Janice Hoiyi LAI, Stephen P. A. FODOR
  • Publication number: 20220186308
    Abstract: Provided herein are methods, compositions, and kits for sequencing nucleic acid molecules of a sample in 3 dimensions (e.g., 3D sequencing).
    Type: Application
    Filed: March 1, 2022
    Publication date: June 16, 2022
    Inventors: Christina FAN, Stephen P.A. FODOR
  • Publication number: 20220170085
    Abstract: The inventions cover systems and methods for generation of emulsions having suitable clarity without requiring refractive index matching between emulsion components. Systems can include: a substrate including a set of openings; a reservoir facing the substrate at a first side and containing a sample fluid configured for droplet formation upon interacting with the set of openings of the substrate; and a collecting container facing the substrate at a second side and containing a set of fluid layers configured with a density gradient and suitable immiscibility characteristics. One or more components of the system(s) can support methods for emulsion generation, in relation to enabling interactions between multiple continuous phases and a dispersed droplet phase to generate clear emulsions. Applications of the inventions(s) can include performance of droplet-based digital PCR in an improved manner (e.g., without requiring implementation of correction factors based upon Poisson statistics).
    Type: Application
    Filed: February 16, 2022
    Publication date: June 2, 2022
    Inventors: Hei Mun Christina FAN, Eleen Yee Lam SHUM, Janice Hoiyi LAI, Stephen P. A. FODOR
  • Patent number: 11242558
    Abstract: The inventions cover systems and methods for generation of emulsions having suitable clarity without requiring refractive index matching between emulsion components. Systems can include: a substrate including a set of openings; a reservoir facing the substrate at a first side and containing a sample fluid configured for droplet formation upon interacting with the set of openings of the substrate; and a collecting container facing the substrate at a second side and containing a set of fluid layers configured with a density gradient and suitable immiscibility characteristics. One or more components of the system(s) can support methods for emulsion generation, in relation to enabling interactions between multiple continuous phases and a dispersed droplet phase to generate clear emulsions. Applications of the inventions(s) can include performance of droplet-based digital PCR in an improved manner (e.g., without requiring implementation of correction factors based upon Poisson statistics).
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: February 8, 2022
    Assignee: ENUMERIX, INC.
    Inventors: Hei Mun Christina Fan, Eleen Yee Lam Shum, Janice Hoiyi Lai, Stephen P. A. Fodor
  • Publication number: 20220017952
    Abstract: The invention(s) cover a composition, where units of the composition are configured to interact with each other (e.g., as neighbors) in order enable decoding of positions of captured target material relative to neighboring units of the composition. In embodiments, the composition includes: a body; and a set of molecules coupled to the body, the set of molecules comprising a first subset and a second subset, wherein the first subset is structured for target analyte capture, and wherein the second subset is structured for interactions with one or more neighboring objects. The invention(s) also cover systems incorporating one or more units of the composition and methods implementing units of the composition.
    Type: Application
    Filed: July 15, 2021
    Publication date: January 20, 2022
    Inventors: Hei Mun Christina Fan, Stephen P. A. Fodor
  • Patent number: 11162136
    Abstract: The inventions cover systems and methods for generation of emulsions having suitable clarity without requiring refractive index matching between emulsion components. Systems can include: a substrate including a set of openings; a reservoir facing the substrate at a first side and containing a sample fluid configured for droplet formation upon interacting with the set of openings of the substrate; and a collecting container facing the substrate at a second side and containing a set of fluid layers configured with a density gradient and suitable immiscibility characteristics. One or more components of the system(s) can support methods for emulsion generation, in relation to enabling interactions between multiple continuous phases and a dispersed droplet phase to generate clear emulsions. Applications of the inventions(s) can include performance of droplet-based digital PCR in an improved manner (e.g., without requiring implementation of correction factors based upon Poisson statistics).
    Type: Grant
    Filed: April 14, 2021
    Date of Patent: November 2, 2021
    Inventors: Hei Mun Christina Fan, Eleen Yee Lam Shum, Janice Hoiyi Lai, Stephen P. A. Fodor
  • Publication number: 20210324448
    Abstract: The inventions cover systems and methods for generation of emulsions having suitable clarity without requiring refractive index matching between emulsion components. Systems can include: a substrate including a set of openings; a reservoir facing the substrate at a first side and containing a sample fluid configured for droplet formation upon interacting with the set of openings of the substrate; and a collecting container facing the substrate at a second side and containing a set of fluid layers configured with a density gradient and suitable immiscibility characteristics. One or more components of the system(s) can support methods for emulsion generation, in relation to enabling interactions between multiple continuous phases and a dispersed droplet phase to generate clear emulsions. Applications of the inventions(s) can include performance of droplet-based digital PCR in an improved manner (e.g.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 21, 2021
    Inventors: Hei Mun Christina Fan, Eleen Yee Lam Shum, Janice Hoiyi Lai, Stephen P. A. Fodor
  • Publication number: 20210324459
    Abstract: The inventions cover systems and methods for generation of emulsions having suitable clarity without requiring refractive index matching between emulsion components. Systems can include: a substrate including a set of openings; a reservoir facing the substrate at a first side and containing a sample fluid configured for droplet formation upon interacting with the set of openings of the substrate; and a collecting container facing the substrate at a second side and containing a set of fluid layers configured with a density gradient and suitable immiscibility characteristics. One or more components of the system(s) can support methods for emulsion generation, in relation to enabling interactions between multiple continuous phases and a dispersed droplet phase to generate clear emulsions. Applications of the inventions(s) can include performance of droplet-based digital PCR in an improved manner (e.g.
    Type: Application
    Filed: April 14, 2021
    Publication date: October 21, 2021
    Inventors: Hei Mun Christina Fan, Eleen Yee Lam Shum, Janice Hoiyi Lai, Stephen P. A. Fodor
  • Publication number: 20210238588
    Abstract: Methods, kits and systems are disclosed for analyzing one or more molecules in a sample. Analyzing the one or more molecules may comprise quantitation of the one or more molecules. Individual molecules may quantitated by PCR, arrays, beads, emulsions, droplets, or sequencing. Quantitation of individual molecules may further comprise stochastic labeling of the one or more molecules with a plurality of oligonucleotide tags to produce one or more stochastically labeled molecules. The methods may further comprise amplifying, sequencing, detecting, and/or quantifying the stochastically labeled molecules. The molecules may be DNA, RNA and/or proteins.
    Type: Application
    Filed: February 24, 2021
    Publication date: August 5, 2021
    Inventors: Glenn K. Fu, Stephen P.A. Fodor, Julie Wilhelmy
  • Publication number: 20210230582
    Abstract: Methods, kits and systems are disclosed for analyzing one or more molecules in a sample. Analyzing the one or more molecules may comprise quantitation of the one or more molecules. Individual molecules may quantitated by PCR, arrays, beads, emulsions, droplets, or sequencing. Quantitation of individual molecules may further comprise stochastic labeling of the one or more molecules with a plurality of oligonucleotide tags to produce one or more stochastically labeled molecules. The methods may further comprise amplifying, sequencing, detecting, and/or quantifying the stochastically labeled molecules. The molecules may be DNA, RNA and/or proteins.
    Type: Application
    Filed: January 25, 2021
    Publication date: July 29, 2021
    Inventors: Glenn K. Fu, Stephen P.A. Fodor, Julie Wilhelmy
  • Publication number: 20210198754
    Abstract: The disclosure provides for methods, compositions, and kits for multiplex nucleic acid analysis of single cells. The methods, compositions and systems may be used for massively parallel single cell sequencing. The methods, compositions and systems may be used to analyze thousands of cells concurrently. The thousands of cells may comprise a mixed population of cells (e.g., cells of different types or subtypes, different sizes).
    Type: Application
    Filed: March 4, 2021
    Publication date: July 1, 2021
    Inventors: Christina Fan, Stephen P.A. Fodor, Glenn Fu, Geoffrey Richard Facer, Julie Wilhelmy
  • Patent number: 10954570
    Abstract: The disclosure provides for methods, compositions, and kits for multiplex nucleic acid analysis of single cells. The methods, compositions and systems may be used for massively parallel single cell sequencing. The methods, compositions and systems may be used to analyze thousands of cells concurrently. The thousands of cells may comprise a mixed population of cells (e.g., cells of different types or subtypes, different sizes).
    Type: Grant
    Filed: March 15, 2017
    Date of Patent: March 23, 2021
    Assignee: Becton, Dickinson and Company
    Inventors: Christina Fan, Stephen P. A. Fodor, Glenn K. Fu, Geoffrey Richard Facer, Julie Wilhelmy
  • Patent number: 10941396
    Abstract: Methods, kits and systems are disclosed for analyzing one or more molecules in a sample. Analyzing the one or more molecules may comprise quantitation of the one or more molecules. Individual molecules may quantitated by PCR, arrays, beads, emulsions, droplets, or sequencing. Quantitation of individual molecules may further comprise stochastic labeling of the one or more molecules with a plurality of oligonucleotide tags to produce one or more stochastically labeled molecules. The methods may further comprise amplifying, sequencing, detecting, and/or quantifying the stochastically labeled molecules. The molecules may be DNA, RNA and/or proteins.
    Type: Grant
    Filed: February 27, 2013
    Date of Patent: March 9, 2021
    Assignee: Becton, Dickinson and Company
    Inventors: Glenn K. Fu, Stephen P. A. Fodor, Julie Wilhelmy
  • Patent number: 10927419
    Abstract: The disclosure provides for methods, compositions, and kits for multiplex nucleic acid analysis of single cells. The methods, compositions and systems may be used for massively parallel single cell sequencing. The methods, compositions and systems may be used to analyze thousands of cells concurrently. The thousands of cells may comprise a mixed population of cells (e.g., cells of different types or subtypes, different sizes).
    Type: Grant
    Filed: May 23, 2018
    Date of Patent: February 23, 2021
    Assignee: Becton, Dickinson and Company
    Inventors: Christina Fan, Stephen P. A. Fodor, Glenn Fu, Geoffrey Richard Facer, Julie Wilhelmy
  • Patent number: RE48913
    Abstract: The disclosure provides for methods, compositions, systems, devices, and kits for determining the number of distinct targets in distinct spatial locations within a sample. In some examples, the methods include: stochastically barcoding the plurality of targets in the sample using a plurality of stochastic barcodes, wherein each of the plurality of stochastic barcodes comprises a spatial label and a molecular label; estimating the number of each of the plurality of targets using the molecular label; and identifying the spatial location of each of the plurality of targets using the spatial label. The method can be multiplexed.
    Type: Grant
    Filed: August 8, 2019
    Date of Patent: February 1, 2022
    Assignee: Becton, Dickinson and Company
    Inventors: Stephen P. A. Fodor, Christina Fan, Glenn Fu, Geoffrey Facer