Patents by Inventor Stephen P. DeWeerth

Stephen P. DeWeerth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10712357
    Abstract: Disclosed are apparatus and methods that provide the ability to electrical stimulate a physical system, and actively eliminate interference with signal acquisition (artifacts) that arises from the stimulation. The technique implemented in the circuits and methods for eliminating interference connects a discharge path to a physical interface to the system to remove charge that is built-up during stimulation. By placing the discharge path in a feedback loop that includes a recording preamplifier and AC-coupling circuitry, the physical interface is brought back to its pre-stimulation offset voltage. The disclosed apparatus and methods may be used with piezoelectric transducers, ultrasound devices, optical diodes, and polarizable and non-polarizable electrodes. The disclosed apparatus can be employed in implantable devices, in vitro or in vivo setups with vertebrate and invertebrate neural tissue, muscle fibers, pancreatic islet cells, osteoblasts, osteoclasts, bacteria, algae, fungi, protists, and plants.
    Type: Grant
    Filed: June 15, 2017
    Date of Patent: July 14, 2020
    Assignee: Georgia Tech Research Corporation
    Inventors: Edgar A. Brown, James D. Ross, Richard A. Blum, Stephen P. DeWeerth
  • Publication number: 20170285058
    Abstract: Disclosed are apparatus and methods that provide the ability to electrical stimulate a physical system, and actively eliminate interference with signal acquisition (artifacts) that arises from the stimulation. The technique implemented in the circuits and methods for eliminating interference connects a discharge path to a physical interface to the system to remove charge that is built-up during stimulation. By placing the discharge path in a feedback loop that includes a recording preamplifier and AC-coupling circuitry, the physical interface is brought back to its pre-stimulation offset voltage. The disclosed apparatus and methods may be used with piezoelectric transducers, ultrasound devices, optical diodes, and polarizable and non-polarizable electrodes. The disclosed apparatus can be employed in implantable devices, in vitro or in vivo setups with vertebrate and invertebrate neural tissue, muscle fibers, pancreatic islet cells, osteoblasts, osteoclasts, bacteria, algae, fungi, protists, and plants.
    Type: Application
    Filed: June 15, 2017
    Publication date: October 5, 2017
    Inventors: Edgar A. Brown, James D. Ross, Richard A. Blum, Stephen P. DeWeerth
  • Patent number: 9684008
    Abstract: Disclosed are apparatus and methods that provide the ability to electrical stimulate a physical system, and actively eliminate interference with signal acquisition (artifacts) that arises from the stimulation. The technique implemented in the circuits and methods for eliminating interference connects a discharge path to a physical interface to the system to remove charge that is built-up during stimulation. By placing the discharge path in a feedback loop that includes a recording preamplifier and AC-coupling circuitry, the physical interface is brought back to its pre-stimulation offset voltage. The disclosed apparatus and methods may be used with piezoelectric transducers, ultrasound devices, optical diodes, and polarizable and non-polarizable electrodes. The disclosed apparatus can be employed in implantable devices, in vitro or in vivo setups with vertebrate and invertebrate neural tissue, muscle fibers, pancreatic islet cells, osteoblasts, osteoclasts, bacteria, algae, fungi, protists, and plants.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: June 20, 2017
    Assignee: Georgia Tech Research Corporation
    Inventors: Edgar A. Brown, James D. Ross, Richard A. Blum, Stephen P. Deweerth
  • Patent number: 9248273
    Abstract: A 3D microelectrode device includes a flexible substrate containing poly-dimethyl siloxane (PDMS). The device may be fabricated in a miniature form factor suitable for attachment to a small organ such as a lateral gastrocnemius muscle of a live rat. In addition to providing a miniaturized, conformable attachment, the device provides an anchoring action via one or more microelectrodes, each having an insertable tip particularly shaped to provide the anchoring action. Furthermore, a base portion of each of the microelectrodes is embedded inside conductive poly-dimethyl siloxane (cPDMS). The cPDMS is contained in a pad that is coupled to a conductive track embedded in the flexible substrate. Embedding of the base portion inside the cPDMS material not only allows the microelectrode to bend in various directions, but also provides good electrical conductivity while eliminating the need for attachment processes using solder or epoxy adhesives.
    Type: Grant
    Filed: June 17, 2013
    Date of Patent: February 2, 2016
    Assignees: Axion Biosystems, Inc., Georgia Tech Research Corporation
    Inventors: Gareth S. Guvanasen, Swaminathan Rajaraman, Ricardo Aguilar, Jr., Liang Guo, T. Richard Nichols, Stephen P. DeWeerth
  • Publication number: 20140107981
    Abstract: Disclosed are apparatus and methods that provide the ability to electrical stimulate a physical system, and actively eliminate interference with signal acquisition (artifacts) that arises from the stimulation. The technique implemented in the circuits and methods for eliminating interference connects a discharge path to a physical interface to the system to remove charge that is built-up during stimulation. By placing the discharge path in a feedback loop that includes a recording preamplifier and AC-coupling circuitry, the physical interface is brought back to its pre-stimulation offset voltage. The disclosed apparatus and methods may be used with piezoelectric transducers, ultrasound devices, optical diodes, and polarizable and non-polarizable electrodes. The disclosed apparatus can be employed in implantable devices, in vitro or in vivo setups with vertebrate and invertebrate neural tissue, muscle fibers, pancreatic islet cells, osteoblasts, osteoclasts, bacteria, algae, fungi, protists, and plants.
    Type: Application
    Filed: December 19, 2013
    Publication date: April 17, 2014
    Applicant: Georgia Tech Research Corporation
    Inventors: Edgar A. Brown, James D. Ross, Richard A. Blum, Stephen P. Deweerth
  • Patent number: 8639329
    Abstract: Disclosed are apparatus and methods that provide the ability to electrical stimulate a physical system, and actively eliminate interference with signal acquisition (artifacts) that arises from the stimulation. The technique implemented in the circuits and methods for eliminating interference connects a discharge path to a physical interface to the system to remove charge that is built-up during stimulation. By placing the discharge path in a feedback loop that includes a recording preamplifier and AC-coupling circuitry, the physical interface is brought back to its pre-stimulation offset voltage. The disclosed apparatus and methods may be used with piezoelectric transducers, ultrasound devices, optical diodes, and polarizable and non-polarizable electrodes. The disclosed apparatus can be employed in implantable devices, in vitro or in vivo setups with vertebrate and invertebrate neural tissue, muscle fibers, pancreatic islet cells, osteoblasts, osteoclasts, bacteria, algae, fungi, protists, and plants.
    Type: Grant
    Filed: August 29, 2006
    Date of Patent: January 28, 2014
    Assignee: Georgia Tech Research Corporation
    Inventors: Edgar A. Brown, James D. Ross, Richard A. Blum, Stephen P. DeWeerth
  • Publication number: 20130338746
    Abstract: A 3D microelectrode device includes a flexible substrate containing poly-dimethyl siloxane (PDMS). The device may be fabricated in a miniature form factor suitable for attachment to a small organ such as a lateral gastrocnemius muscle of a live rat. In addition to providing a miniaturized, conformable attachment, the device provides an anchoring action via one or more microelectrodes, each having an insertable tip particularly shaped to provide the anchoring action. Furthermore, a base portion of each of the microelectrodes is embedded inside conductive poly-dimethyl siloxane (cPDMS). The cPDMS is contained in a pad that is coupled to a conductive track embedded in the flexible substrate. Embedding of the base portion inside the cPDMS material not only allows the microelectrode to bend in various directions, but also provides good electrical conductivity while eliminating the need for attachment processes using solder or epoxy adhesives.
    Type: Application
    Filed: June 17, 2013
    Publication date: December 19, 2013
    Inventors: GARETH S. GUVANASEN, SWAMINATHAN RAJARAMAN, RICARDO AGUILAR, JR., LIANG GUO, T. RICHARD NICHOLS, STEPHEN P. DEWEERTH
  • Patent number: 8349727
    Abstract: Stretchable multi-chip modules (SMCMs) are capable of withstanding large mechanical deformations and conforming to curved surfaces. These SMCMs may find their utilities in elastic consumer electronics such as elastic displays, skin-like electronic sensors, etc. In particular, stretchable neural implants provide improved performances as to cause less mechanical stress and thus fewer traumas to surrounding soft tissues. Such SMCMs usually comprise of various electronic components attached to or embedded in a polydimethylsiloxane (PDMS) substrate and wired through stretchable interconnects. However, reliably and compactly connecting the electronic components to PDMS-based stretchable interconnects is very challenging. This invention describes an integrated method for high-density interconnection of electronic components through stretchable interconnects in an SMCM. This invention has applications in high-density SMCMs, as well as high-density stretchable/conformable neural interfaces.
    Type: Grant
    Filed: April 8, 2011
    Date of Patent: January 8, 2013
    Inventors: Liang Guo, Stephen P. DeWeerth
  • Publication number: 20110254171
    Abstract: Stretchable multi-chip modules (SMCMs) are capable of withstanding large mechanical deformations and conforming to curved surfaces. These SMCMs may find their utilities in elastic consumer electronics such as elastic displays, skin-like electronic sensors, etc. In particular, stretchable neural implants provide improved performances as to cause less mechanical stress and thus fewer traumas to surrounding soft tissues. Such SMCMs usually comprise of various electronic components attached to or embedded in a polydimethylsiloxane (PDMS) substrate and wired through stretchable interconnects. However, reliably and compactly connecting the electronic components to PDMS-based stretchable interconnects is very challenging. This invention describes an integrated method for high-density interconnection of electronic components through stretchable interconnects in an SMCM. This invention has applications in high-density SMCMs, as well as high-density stretchable/conformable neural interfaces.
    Type: Application
    Filed: April 8, 2011
    Publication date: October 20, 2011
    Inventors: Liang Guo, Stephen P. DeWeerth
  • Patent number: 7461882
    Abstract: Apparatus and processes are disclosed that provide a microfabricated microtool having a mechanically actuated manipulating mechanism. The microtool comprises a tweezer having flexible arms, and an actuating mechanism. A biological, electrical, or mechanical component is grasped, cut, sensed, or measured by the flexible arms. The actuating mechanism requires no electric power and is achieved by the reciprocating motion of a smooth, rigid microstructure applied against the flexible arms of the microtool. In certain implementations, actuator motion is controlled distally by a tethered cable. A process is also disclosed for producing a microtool, and in particular, by micropatterning. Photolithography may be used to form micro-molds that pattern the microtool or components of the microtool. In certain implementations, the tweezer and actuating mechanism are produced fully assembled. In other implementations, the tweezer and actuating mechanism are produced separately and assembled together.
    Type: Grant
    Filed: November 11, 2005
    Date of Patent: December 9, 2008
    Assignee: Georgia Tech Research Corp.
    Inventors: Yoonsu Choi, Mark G. Allen, James Ross, Stephen P. DeWeerth
  • Publication number: 20080284187
    Abstract: Apparatus and processes are disclosed that provide a microfabricated microtool having a mechanically actuated manipulating mechanism. The microtool comprises a tweezer having flexible arms, and an actuating mechanism. A biological, electrical, or mechanical component is grasped, cut, sensed, or measured by the flexible arms. The actuating mechanism requires no electric power and is achieved by the reciprocating motion of a smooth, rigid microstructure applied against the flexible arms of the microtool. In certain implementations, actuator motion is controlled distally by a tethered cable. A process is also disclosed for producing a microtool, and in particular, by micropatterning. Photolithography may be used to form micro-molds that pattern the microtool or components of the microtool. In certain implementations, the tweezer and actuating mechanism are produced fully assembled. In other implementations, the tweezer and actuating mechanism are produced separately and assembled together.
    Type: Application
    Filed: September 7, 2007
    Publication date: November 20, 2008
    Applicant: GEORGIA TECH RESEARCH CORPORATION
    Inventors: Yoonsu Choi, Mark G. Allen, James Ross, Stephen P. DeWeerth