Patents by Inventor Stephen P. Hubbell

Stephen P. Hubbell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8803751
    Abstract: A multiferroic element may include a substrate formed on an electrically conductive ground plane. The substrate may be formed from a material having a predetermined elastic modulus. A layer of piezoelectric material may be formed on the substrate. A layer of magnetostrictive material may be bonded to the layer of piezoelectric material. A mechanical strain is created in the layer of piezoelectric material in response to a voltage signal being applied to the multiferroic element. The mechanical strain in the layer of piezoelectric material causes a mechanical strain in the layer of magnetostrictive material to produce a radio frequency magnetic field that is proportional to the voltage signal for generating a radio frequency electromagnetic wave. The predetermined elastic modulus of the substrate is substantially lower than an elastic modulus of the layer of piezoelectric material.
    Type: Grant
    Filed: September 20, 2010
    Date of Patent: August 12, 2014
    Assignee: The Boeing Company
    Inventors: Robert J. Miller, William Preston Geren, Stephen P. Hubbell
  • Patent number: 8760157
    Abstract: A multiferroic antenna and sensor where the sensor includes a multiferroic stack of multiple connected multiferroic layer-pairs, each multiferroic layer-pair comprising an alternating layer of a magnetostrictive material and a piezoelectric material bonded together enabling a high signal sensitivity, a magnetic field of an incident signal causing mechanical strain in the magnetostrictive material layers that strains adjacent piezoelectric material layers producing an electrical voltage in each multiferroic layer-pair proportional to the incident signal. An output of the multiferroic stack comprises the electrical voltage amplified proportional to a total number of multiple connected multiferroic layer-pairs in the multiferroic stack.
    Type: Grant
    Filed: September 17, 2009
    Date of Patent: June 24, 2014
    Assignee: The Boeing Company
    Inventors: Robert J. Miller, William P. Geren, Stephen P. Hubbell
  • Publication number: 20110062955
    Abstract: A multiferroic antenna and sensor where the sensor includes a multiferroic stack of multiple connected multiferroic layer-pairs, each multiferroic layer-pair comprising an alternating layer of a magnetostrictive material and a piezoelectric material bonded together enabling a high signal sensitivity, a magnetic field of an incident signal causing mechanical strain in the magnetostrictive material layers that strains adjacent piezoelectric material layers producing an electrical voltage in each multiferroic layer-pair proportional to the incident signal. An output of the multiferroic stack comprises the electrical voltage amplified proportional to a total number of multiple connected multiferroic layer-pairs in the multiferroic stack.
    Type: Application
    Filed: September 17, 2009
    Publication date: March 17, 2011
    Inventors: Robert J. Miller, William P. Geren, Stephen P. Hubbell
  • Patent number: 6362617
    Abstract: A magnetic field sensor which can be used as an active antenna is disclosed that is capable of small size, ultrawideband operation, and high efficiency. The sensor includes a multiplicity of magnetic field transducers, e.g., superconducting quantum interference devices (SQUIDs) or Mach-Zehnder modulators, that are electrically coupled in a serial array. Dummy SQUIDs may be used about the perimeter of the SQUID array, and electrically coupled to the active SQUIDs for eliminating edge effects that otherwise would occur because of the currents that flow within the SQUIDs. Either a magnetic flux transformer which collects the magnetic flux and distributes the flux to the transducers or a feedback assembly (bias circuit) or both may be used for increasing the sensitivity and linear dynamic range of the antenna.
    Type: Grant
    Filed: June 6, 1995
    Date of Patent: March 26, 2002
    Assignee: The Boeing Company
    Inventor: Stephen P. Hubbell
  • Patent number: 6005380
    Abstract: A magnetic field sensor which can be used as an active antenna is disclosed that is capable of small size, ultrawideband operation, and high efficiency. The sensor includes a multiplicity of magnetic field transducers, e.g., superconducting quantum interference devices (SQUIDs) or Mach-Zehnder modulators, that are electrically coupled in a serial array. Dummy SQUIDs may be used about the perimeter of the SQUID array, and electrically coupled to the active SQUIDs for eliminating edge effects that otherwise would occur because of the currents that flow within the SQUIDs. Either a magnetic flux transformer which collects the magnetic flux and distributes the flux to the transducers or a feedback assembly (bias circuit) or both may be used for increasing the sensitivity and linear dynamic range of the antenna.
    Type: Grant
    Filed: April 3, 1998
    Date of Patent: December 21, 1999
    Assignee: The Boeing Company
    Inventor: Stephen P. Hubbell
  • Patent number: 5994891
    Abstract: A magnetic field sensor which can be used as an active antenna is disclosed that is capable of small size, ultrawideband operation, and high efficiency. The sensor includes a multiplicity of magnetic field transducers, e.g., superconducting quantum interference devices (SQUIDs) or Mach-Zehnder modulators, that are electrically coupled in a serial array. Dummy SQUIDs may be used about the perimeter of the SQUID array, and electrically coupled to the active SQUIDs for eliminating edge effects that otherwise would occur because of the currents that flow within the SQUIDs. Either a magnetic flux transformer which collects the magnetic flux and distributes the flux to the transducers or a feedback assembly (bias circuit) or both may be used for increasing the sensitivity and linear dynamic range of the antenna.
    Type: Grant
    Filed: February 3, 1997
    Date of Patent: November 30, 1999
    Assignee: The Boeing Company
    Inventor: Stephen P. Hubbell
  • Patent number: 5933001
    Abstract: A magnetic field sensor which can be used as an active antenna is disclosed that is capable of small size, ultrawideband operation, and high efficiency. The sensor includes a multiplicity of magnetic field transducers, e.g., superconducting quantum interference devices (SQUIDs) or Mach-Zehnder modulators, that are electrically coupled in a serial array. Dummy SQUIDs may be used about the perimeter of the SQUID array, and electrically coupled to the active SQUIDs for eliminating edge effects that otherwise would occur because of the currents that flow within the SQUIDs. Either a magnetic flux transformer which collects the magnetic flux and distributes the flux to the transducers or a feedback assembly (bias circuit) or both may be used for increasing the sensitivity and linear dynamic range of the antenna.
    Type: Grant
    Filed: June 5, 1997
    Date of Patent: August 3, 1999
    Assignee: The Boeing Company
    Inventor: Stephen P. Hubbell
  • Patent number: 5844407
    Abstract: A magnetic field sensor which can be used as an active antenna is disclosed that is capable of small size, ultrawideband operation, and high efficiency. The sensor includes a multiplicity of magnetic field transducers, e.g., superconducting quantum interference devices (SQUIDs) or Mach-Zehnder modulators, that are electrically coupled in a serial array. Dummy SQUIDs may be used about the perimeter of the SQUID array, and electrically coupled to the active SQUIDs for eliminating edge effects that otherwise would occur because of the currents that flow within the SQUIDs. Either a magnetic flux transformer which collects the magnetic flux and distributes the flux to the transducers or a feedback assembly (bias circuit) or both may be used for increasing the sensitivity and linear dynamic range of the antenna.
    Type: Grant
    Filed: June 5, 1997
    Date of Patent: December 1, 1998
    Assignee: The Boeing Company
    Inventor: Stephen P. Hubbell
  • Patent number: 5600242
    Abstract: A magnetic field sensor which can be used as an active antenna is disclosed that is capable of small size, ultrawideband operation, and high efficiency. The sensor includes a multiplicity of magnetic field transducers, e.g., superconducting quantum interference devices (SQUIDs) that are electrically coupled in a serial array. Dummy SQUIDs may be used about the perimeter of the array, and electrically coupled to the active SQUIDs for eliminating the edge effects on the active SQUIDs. A magnetic flux transformer may be used in combination with a feedback assembly for increasing the sensitivity and linear dynamic range of the active antenna.
    Type: Grant
    Filed: September 26, 1994
    Date of Patent: February 4, 1997
    Assignee: The Boeing Company
    Inventor: Stephen P. Hubbell