Patents by Inventor Stephen Pistorius

Stephen Pistorius has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9435901
    Abstract: Systems, devices and methods of reconstructing an image from a positron emission tomography scan that may include detecting a plurality of photons selected from scattered photons and unscattered photons by a plurality of detectors, identifying a time interval for each of the plurality of photons by a processing device, matching each of the plurality of photons into a plurality of pairs of coincident photons based upon a substantially simultaneous time interval identified by the processing device, measuring an energy produced by each of the plurality of photons by the plurality of detectors, determining a scattering angle for each pair of coincident photons from an annihilation point relative to the position of the plurality of detectors by the processing device based on the energy produced and reconstructing an image using a reconstruction algorithm, wherein the reconstruction algorithm uses the scattering angle of each pair of coincident photons.
    Type: Grant
    Filed: June 30, 2014
    Date of Patent: September 6, 2016
    Assignee: UNIVERSITY OF MANITOBA
    Inventors: Stephen Pistorius, Hongyan Sun
  • Publication number: 20140374607
    Abstract: Systems, devices and methods of reconstructing an image from a positron emission tomography scan that may include detecting a plurality of photons selected from scattered photons and unscattered photons by a plurality of detectors, identifying a time interval for each of the plurality of photons by a processing device, matching each of the plurality of photons into a plurality of pairs of coincident photons based upon a substantially simultaneous time interval identified by the processing device, measuring an energy produced by each of the plurality of photons by the plurality of detectors, determining a scattering angle for each pair of coincident photons from an annihilation point relative to the position of the plurality of detectors by the processing device based on the energy produced and reconstructing an image using a reconstruction algorithm, wherein the reconstruction algorithm uses the scattering angle of each pair of coincident photons.
    Type: Application
    Filed: June 30, 2014
    Publication date: December 25, 2014
    Inventors: Stephen Pistorius, Hongyan Sun
  • Patent number: 8872697
    Abstract: The present invention uses a Single Instruction Multiple Data (SIMD) architecture to form real time 3D radar images recorded in cylindrical near field scenarios using a wavefront reconstruction approach. A novel interpolation approach is executed in parallel, significantly reducing the reconstruction time without compromising the spatial accuracy and signal to noise ratios of the resulting images. Since each point in the problem space can be processed independently, the proposed technique was implemented using an approach on a General Purpose Graphics Processing Unit (GPGPU) to take advantage of the high performance computing capabilities of this platform.
    Type: Grant
    Filed: August 15, 2012
    Date of Patent: October 28, 2014
    Inventors: Daniel Flores Tapia, Stephen Pistorius
  • Patent number: 8866087
    Abstract: Systems, devices and methods of reconstructing an image from a positron emission tomography scan that may include detecting a plurality of photons selected from scattered photons and unscattered photons by a plurality of detectors, identifying a time interval for each of the plurality of photons by a processing device, matching each of the plurality of photons into a plurality of pairs of coincident photons based upon a substantially simultaneous time interval identified by the processing device, measuring an energy produced by each of the plurality of photons by the plurality of detectors, determining a scattering angle for each pair of coincident photons from an annihilation point relative to the position of the plurality of detectors by the processing device based on the energy produced and reconstructing an image using a reconstruction algorithm, wherein the reconstruction algorithm uses the scattering angle of each pair of coincident photons.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: October 21, 2014
    Assignee: University of Manitoba
    Inventors: Stephen Pistorius, Hongyan Sun
  • Publication number: 20140158890
    Abstract: Systems, devices and methods of reconstructing an image from a positron emission tomography scan that may include detecting a plurality of photons selected from scattered photons and unscattered photons by a plurality of detectors, identifying a time interval for each of the plurality of photons by a processing device, matching each of the plurality of photons into a plurality of pairs of coincident photons based upon a substantially simultaneous time interval identified by the processing device, measuring an energy produced by each of the plurality of photons by the plurality of detectors, determining a scattering angle for each pair of coincident photons from an annihilation point relative to the position of the plurality of detectors by the processing device based on the energy produced and reconstructing an image using a reconstruction algorithm, wherein the reconstruction algorithm uses the scattering angle of each pair of coincident photons.
    Type: Application
    Filed: May 29, 2012
    Publication date: June 12, 2014
    Inventors: Stephen Pistorius, Hongyan Sun
  • Publication number: 20130044022
    Abstract: The present invention uses a Single Instruction Multiple Data (SIMD) architecture to form real time 3D radar images recorded in cylindrical near field scenarios using a wavefront reconstruction approach. A novel interpolation approach is executed in parallel, significantly reducing the reconstruction time without compromising the spatial accuracy and signal to noise ratios of the resulting images. Since each point in the problem space can be processed independently, the proposed technique was implemented using an approach on a General Purpose Graphics Processing Unit (GPGPU) to take advantage of the high performance computing capabilities of this platform.
    Type: Application
    Filed: August 15, 2012
    Publication date: February 21, 2013
    Inventors: Daniel Flores Tapia, Stephen Pistorius