Patents by Inventor Stephen Q. Zhou
Stephen Q. Zhou has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20250107885Abstract: Provided is a production device for producing an intraocular lens blank, with a first mold half, which has an outer ring, and a second mold half, which have a spacing state, in which the second mold half is arranged outside the outer ring, and a proximity state, in which the second mold half is clamped in the outer ring as a result of inserting the second mold half in an inserting direction, wherein the first mold half has a central region of the first mold half and the second mold half has a central region of the second mold half, wherein the second mold half has a bellows, which extends fully circumferentially around the central region of the second mold half in a circumferential direction with respect to an optical axis of the optical body and has a first bellows portion and a second bellows portion, which is arranged directly outside the first bellows portion in a radial direction with respect to the optical axis and, in the spacing state, forms with the first bellows portion a first angle (?), which is sType: ApplicationFiled: February 1, 2022Publication date: April 3, 2025Applicant: CARL ZEISS MEDITEC AGInventors: Thorben BADUR, Stephen Q. ZHOU, Minh CAO, Christoph ZUMBACH, Vincent SUNIO, Alex PFOTENHAUER, Karen HONG
-
Publication number: 20210369444Abstract: A system/method allowing hydrophilicity alteration of a polymeric material (PM) is disclosed. The PM hydrophilicity alteration changes the PM characteristics by decreasing the PM refractive index, increasing the PM electrical conductivity, and increasing the PM weight. The system/method incorporates a laser radiation source that generates tightly focused laser pulses within a three-dimensional portion of the PM to affect these changes in PM properties. The system/method may be applied to the formation of customized intraocular lenses comprising material (PLM) wherein the lens created using the system/method is surgically positioned within the eye of the patient. The implanted lens refractive index may then be optionally altered in situ with laser pulses to change the optical properties of the implanted lens and thus achieve optimal corrected patient vision. This system/method permits numerous in situ modifications of an implanted lens as the patient's vision changes with age.Type: ApplicationFiled: August 10, 2021Publication date: December 2, 2021Inventors: Ruth Sahler, Stephen Q. Zhou, Josef F. Bille
-
Patent number: 11090151Abstract: A system/method allowing hydrophilicity alteration of a polymeric material (PM) is disclosed. The PM hydrophilicity alteration changes the PM characteristics by decreasing the PM refractive index, increasing the PM electrical conductivity, and increasing the PM weight. The system/method incorporates a laser radiation source that generates tightly focused laser pulses within a three-dimensional portion of the PM to affect these changes in PM properties. The system/method may be applied to the formation of customized intraocular lenses comprising material (PLM) wherein the lens created using the system/method is surgically positioned within the eye of the patient. The implanted lens refractive index may then be optionally altered in situ with laser pulses to change the optical properties of the implanted lens and thus achieve optimal corrected patient vision. This system/method permits numerous in situ modifications of an implanted lens as the patient's vision changes with age.Type: GrantFiled: May 12, 2014Date of Patent: August 17, 2021Assignee: PERFECT IP, LLCInventors: Ruth Sahler, Stephen Q. Zhou, Josef F. Bille
-
Patent number: 10299914Abstract: A method of maintaining a hydrophilic intraocular lens in a foldable state without immersing the intraocular lens in liquid water includes the step of storing the foldable intraocular lens within a substantially airtight package containing a water reservoir not in direct contact with the lens.Type: GrantFiled: June 10, 2016Date of Patent: May 28, 2019Assignee: Carl Zeiss Meditec Production, LLCInventors: Robert E. Glick, Stephen Q. Zhou
-
Patent number: 9999499Abstract: A preloaded intraocular lens (IOL) system/method utilizing haptic compression is disclosed. The disclosed system/method utilizes an IOL packaged in a compressed state that is inserted into a patient using a cartridge and lumen through which the IOL is advanced. Within this context the haptics to the IOL are wrapped around the IOL in a coplanar fashion during the loading of the IOL to permit the IOL to be shipped and stored in a compressed state. This compressed state is achieve by wrapping the haptics of the IOL during the manufacturing process to ensure that the IOL is properly aligned and thus delivered in a predetermined orientation within the patient's eye. This compressed packaging of the IOL permits a more uniform and consistent placement of the IOL in the patient and eliminates the potential for physician error during the critical IOL placement procedure.Type: GrantFiled: March 15, 2013Date of Patent: June 19, 2018Assignee: Carl Zeiss Meditec Production, LLCInventors: Rick Aguilera, Bob Glick, Stephen Q. Zhou
-
Publication number: 20160278915Abstract: A method of maintaining a hydrophilic intraocular lens in a foldable state without immersing the intraocular lens in liquid water includes the step of storing the foldable intraocular lens within a substantially airtight package containing a water reservoir not in direct contact with the lens.Type: ApplicationFiled: June 10, 2016Publication date: September 29, 2016Inventors: Robert E. Glick, Stephen Q. Zhou
-
Patent number: 9186242Abstract: A system/method allowing hydrophilicity alteration of a polymeric material (PM) is disclosed. The PM hydrophilicity alteration changes the PM characteristics by decreasing the PM refractive index, increasing the PM electrical conductivity, and increasing the PM weight. The system/method incorporates a laser radiation source that generates tightly focused laser pulses within a three-dimensional portion of the PM to affect these changes in PM properties. The system/method may be applied to the formation of customized intraocular lenses comprising material (PLM) wherein the lens created using the system/method is surgically positioned within the eye of the patient. The implanted lens refractive index may then be optionally altered in situ with laser pulses to change the optical properties of the implanted lens and thus achieve optimal corrected patient vision. This system/method permits numerous in situ modifications of an implanted lens as the patient's vision changes with age.Type: GrantFiled: May 12, 2014Date of Patent: November 17, 2015Assignee: PERFECT IP, LLCInventors: Ruth Sahler, Stephen Q. Zhou, Josef F. Bille
-
Publication number: 20150305933Abstract: A system is provided for noninvasive corneal refractive correction. The system includes an ortho-K lens specifically manufactured based on a topography of a cornea of a human eye for reshaping the cornea from a first configuration to a second configuration. The reshaping can be in situ or as a result of pre-laser treatment. The system also includes a laser device for initiating photochemical crosslinking within an internal layer of the cornea such that the crosslinked cornea remains substantially in the same shape as the second configuration without wearing the ortho-K lens. The laser device includes a laser source configured to produce output radiation in the form of light pulses, a scanner configured to distribute the light pulses in a predetermined pattern, and a light focusing objective configured to focus on an internal space of the cornea and deliver the light pulses into the internal space.Type: ApplicationFiled: April 23, 2015Publication date: October 29, 2015Inventor: Stephen Q. Zhou
-
Patent number: 9107746Abstract: A system/method allowing hydrophilicity alteration of a polymeric material (PM) is disclosed. The PM hydrophilicity alteration changes the PM characteristics by decreasing the PM refractive index, increasing the PM electrical conductivity, and increasing the PM weight. The system/method incorporates a laser radiation source that generates tightly focused laser pulses within a three-dimensional portion of the PM to affect these changes in PM properties. The system/method may be applied to the formation of customized intraocular lenses comprising material (PLM) wherein the lens created using the system/method is surgically positioned within the eye of the patient. The implanted lens refractive index may then be optionally altered in situ with laser pulses to change the optical properties of the implanted lens and thus achieve optimal corrected patient vision. This system/method permits numerous in situ modifications of an implanted lens as the patient's vision changes with age.Type: GrantFiled: May 12, 2014Date of Patent: August 18, 2015Assignee: PERFECT IP, LLCInventors: Ruth Sahler, Stephen Q. Zhou, Josef F. Bille
-
Patent number: 9023257Abstract: A system/method allowing hydrophilicity alteration of a polymeric material (PM) is disclosed. The PM hydrophilicity alteration changes the PM characteristics by decreasing the PM refractive index, increasing the PM electrical conductivity, and increasing the PM weight. The system/method incorporates a laser radiation source that generates tightly focused laser pulses within a three-dimensional portion of the PM to affect these changes in PM properties. The system/method may be applied to the formation of customized intraocular lenses comprising material (PLM) wherein the lens created using the system/method is surgically positioned within the eye of the patient. The implanted lens refractive index may then be optionally altered in situ with laser pulses to change the optical properties of the implanted lens and thus achieve optimal corrected patient vision. This system/method permits numerous in situ modifications of an implanted lens as the patient's vision changes with age.Type: GrantFiled: March 15, 2013Date of Patent: May 5, 2015Assignee: Perfect IP, LLCInventors: Ruth Sahler, Stephen Q. Zhou, Josef F. Bille
-
Publication number: 20150114855Abstract: A method of maintaining a hydrophilic intraocular lens in a foldable state without immersing the intraocular lens in liquid water includes the step of storing the foldable intraocular lens within a substantially air tight package containing a water reservoir not in direct contact with the lens.Type: ApplicationFiled: May 30, 2014Publication date: April 30, 2015Applicant: Aaren Scientific Inc.Inventors: Robert E. Glick, Stephen Q. Zhou
-
Publication number: 20140288644Abstract: A system/method allowing hydrophilicity alteration of a polymeric material (PM) is disclosed. The PM hydrophilicity alteration changes the PM characteristics by decreasing the PM refractive index, increasing the PM electrical conductivity, and increasing the PM weight. The system/method incorporates a laser radiation source that generates tightly focused laser pulses within a three-dimensional portion of the PM to affect these changes in PM properties. The system/method may be applied to the formation of customized intraocular lenses comprising material (PLM) wherein the lens created using the system/method is surgically positioned within the eye of the patient. The implanted lens refractive index may then be optionally altered in situ with laser pulses to change the optical properties of the implanted lens and thus achieve optimal corrected patient vision. This system/method permits numerous in situ modifications of an implanted lens as the patient's vision changes with age.Type: ApplicationFiled: May 12, 2014Publication date: September 25, 2014Applicant: PERFECT IP, LLCInventors: Ruth Sahler, Stephen Q. Zhou, Josef F. Bille
-
Publication number: 20140249516Abstract: A system/method allowing hydrophilicity alteration of a polymeric material (PM) is disclosed. The PM hydrophilicity alteration changes the PM characteristics by decreasing the PM refractive index, increasing the PM electrical conductivity, and increasing the PM weight. The system/method incorporates a laser radiation source that generates tightly focused laser pulses within a three-dimensional portion of the PM to affect these changes in PM properties. The system/method may be applied to the formation of customized intraocular lenses comprising material (PLM) wherein the lens created using the system/method is surgically positioned within the eye of the patient. The implanted lens refractive index may then be optionally altered in situ with laser pulses to change the optical properties of the implanted lens and thus achieve optimal corrected patient vision. This system/method permits numerous in situ modifications of an implanted lens as the patient's vision changes with age.Type: ApplicationFiled: May 12, 2014Publication date: September 4, 2014Applicant: PERFECT IP, LLCInventors: Ruth Sahler, Stephen Q. Zhou, Josef F. Bille
-
Publication number: 20140239524Abstract: A system/method allowing hydrophilicity alteration of a polymeric material (PM) is disclosed. The PM hydrophilicity alteration changes the PM characteristics by decreasing the PM refractive index, increasing the PM electrical conductivity, and increasing the PM weight. The system/method incorporates a laser radiation source that generates tightly focused laser pulses within a three-dimensional portion of the PM to affect these changes in PM properties. The system/method may be applied to the formation of customized intraocular lenses comprising material (PLM) wherein the lens created using the system/method is surgically positioned within the eye of the patient. The implanted lens refractive index may then be optionally altered in situ with laser pulses to change the optical properties of the implanted lens and thus achieve optimal corrected patient vision. This system/method permits numerous in situ modifications of an implanted lens as the patient's vision changes with age.Type: ApplicationFiled: May 12, 2014Publication date: August 28, 2014Applicant: PERFECT IP, LLCInventors: Ruth Sahler, Stephen Q. Zhou, Josef F. Bille
-
Publication number: 20140243443Abstract: A system/method allowing hydrophilicity alteration of a polymeric material (PM) is disclosed. The PM hydrophilicity alteration changes the PM characteristics by decreasing the PM refractive index, increasing the PM electrical conductivity, and increasing the PM weight. The system/method incorporates a laser radiation source that generates tightly focused laser pulses within a three-dimensional portion of the PM to affect these changes in PM properties. The system/method may be applied to the formation of customized intraocular lenses comprising material (PLM) wherein the lens created using the system/method is surgically positioned within the eye of the patient. The implanted lens refractive index may then be optionally altered in situ with laser pulses to change the optical properties of the implanted lens and thus achieve optimal corrected patient vision. This system/method permits numerous in situ modifications of an implanted lens as the patient's vision changes with age.Type: ApplicationFiled: May 12, 2014Publication date: August 28, 2014Applicant: PERFECT IP, LLCInventors: Ruth Sahler, Stephen Q. Zhou, Josef F. Bille
-
Publication number: 20140135920Abstract: A system/method allowing hydrophilicity alteration of a polymeric material (PM) is disclosed. The PM hydrophilicity alteration changes the PM characteristics by decreasing the PM refractive index, increasing the PM electrical conductivity, and increasing the PM weight. The system/method incorporates a laser radiation source that generates tightly focused laser pulses within a three-dimensional portion of the PM to affect these changes in PM properties. The system/method may be applied to the formation of customized intraocular lenses comprising material (PLM) wherein the lens created using the system/method is surgically positioned within the eye of the patient. The implanted lens refractive index may then be optionally altered in situ with laser pulses to change the optical properties of the implanted lens and thus achieve optimal corrected patient vision. This system/method permits numerous in situ modifications of an implanted lens as the patient's vision changes with age.Type: ApplicationFiled: March 15, 2013Publication date: May 15, 2014Applicant: AAREN SCIENTIFIC, INC.Inventors: Ruth Sahler, Stephen Q. Zhou, Josef F. Bille
-
Publication number: 20140066946Abstract: A preloaded intraocular lens (IOL) system/method utilizing haptic compression is disclosed. The disclosed system/method utilizes an IOL packaged in a compressed state that is inserted into a patient using a cartridge and lumen through which the IOL is advanced. Within this context the haptics to the IOL are wrapped around the IOL in a coplanar fashion during the loading of the IOL to permit the IOL to be shipped and stored in a compressed state. This compressed state is achieve by wrapping the haptics of the IOL during the manufacturing process to ensure that the IOL is properly aligned and thus delivered in a predetermined orientation within the patient's eye. This compressed packaging of the IOL permits a more uniform and consistent placement of the IOL in the patient and eliminates the potential for physician error during the critical IOL placement procedure.Type: ApplicationFiled: March 15, 2013Publication date: March 6, 2014Applicant: Aaren Scientific, Inc.Inventors: Rick Aguilera, Bob Glick, Stephen Q. Zhou
-
Publication number: 20130103144Abstract: A lens for placement in a human eye, such as an intraocular lens, has at least some of its optical properties modified with a laser. The lens preferably contains at least 5% by weight UV absorber so commercially feasible rates of manufacture can be achieved. The laser forms modified loci in the lens where the modified loci have a different refractive index than the refractive index of the material before modification. The same laser modification technique can be used on the cornea in situ.Type: ApplicationFiled: September 8, 2010Publication date: April 25, 2013Applicant: AAREN SCIENTIFIC INC.Inventors: Josef F. Bille, Stephen Q. Zhou
-
Patent number: 8133274Abstract: Intraocular lenses containing a photochromic agent, are disclosed. Specifically, the foldable intraocular lens of the present invention comprises an optic body made from a crosslinked material comprising at least one monomer, a crosslinker, a UV absorber, and a photochromic agent which has a maximum absorption peak of about 400-500 nm in its excited state. The lens has a glass transition temperature of about 37° C. or lower. Methods for making these intraocular lenses are also taught.Type: GrantFiled: June 13, 2005Date of Patent: March 13, 2012Assignee: Medennium, Inc.Inventors: Stephen Q. Zhou, Christopher D. Wilcox, Christine J. Liau
-
Publication number: 20090198326Abstract: An accommodative intraocular lens system for treating presbyopic is disclosed. The system includes a first lens having negative optic power adapted for placement in the posterior chamber of the eye and capable of moving forward and back along the optic axis; and a second lens having a positive optic power which is implanted within the capsular bag. The second lens can be the natural crystalline lens of the eye. The position of the first lens, forward or back relative to the second lens, focuses the eye for seeing distant or close-in objects.Type: ApplicationFiled: January 31, 2008Publication date: August 6, 2009Applicant: MEDENNIUM INC.Inventors: Stephen Q. Zhou, Christopher D. Wilcox