Patents by Inventor Stephen Quenton Smith

Stephen Quenton Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240255694
    Abstract: An optical fiber having a silica-based core region with an outer radius r1 from about 4.0 microns to about 4.6 microns and a core volume from about 4.5% ?-micron2 to about 5.5% ?-micron2. The optical fiber further includes a depressed-index cladding region and an outer cladding region. The depressed-index cladding region having an inner radius r2 such that r1/r2 is greater than about 0.4 and less than about 0.6 and a trench volume between about ?50% ?-micron2s and about ?20% ?-micron2. The optical fiber has a mode field diameter at 1310 nm from about 8.8 microns to about 9.4 microns, a 2 m cable cutoff from about 1120 nm to about 1260 nm, a bending loss at 1310 nm, as determined by the mandrel wrap test using a 15 mm diameter mandrel, of less than 1.0 dB/turn, and a zero dispersion wavelength between 1300 nm and 1324 nm.
    Type: Application
    Filed: January 12, 2024
    Publication date: August 1, 2024
    Inventors: Scott Robertson Bickham, Martin Hempstead, Snigdharaj Kumar Mishra, Stephen Quenton Smith, Pushkar Tandon
  • Patent number: 10383521
    Abstract: A non-cylindrical hypotube is disclosed, such as for use in OCT and endoscopy. The hypotube is defined by a non-cylindrical, rotationally symmetric tube and has an interior, a proximal-end section with an outer diameter D1, a distal-end section with an outer diameter D3, and a middle section between the proximal-end and distal-end sections and having an outer diameter D2, wherein D2<D1, and D2<D3. The distal-end section is sized to accommodate the optical probe and includes an outer surface with an aperture that allows for optical communication therethrough.
    Type: Grant
    Filed: November 4, 2015
    Date of Patent: August 20, 2019
    Assignee: Corning Incorporated
    Inventors: Venkata Adiseshaiah Bhagavatula, Woraphat Dockchoorung, Klaus Hartkorn, Mark Alan McDermott, Stephen Quenton Smith
  • Publication number: 20160120408
    Abstract: A non-cylindrical hypotube is disclosed, such as for use in OCT and endoscopy. The hypotube is defined by a non-cylindrical, rotationally symmetric tube and has an interior, a proximal-end section with an outer diameter D1, a distal-end section with an outer diameter D3, and a middle section between the proximal-end and distal-end sections and having an outer diameter D2, wherein D2<D1, and D2<D3. The distal-end section is sized to accommodate the optical probe and includes an outer surface with an aperture that allows for optical communication therethrough.
    Type: Application
    Filed: November 4, 2015
    Publication date: May 5, 2016
    Inventors: Venkata Adiseshaiah Bhagavatula, Woraphat Dockchoorung, Klaus Hartkorn, Mark Alan McDermott, Stephen Quenton Smith
  • Publication number: 20150355413
    Abstract: Integrated torque jacket systems and methods for optical coherence tomography are disclosed. The system includes an optical fiber cable having an optical fiber surrounded by an outer jacket. An optical probe is operably attached to the distal end of the optical fiber cable. The optical fiber cable includes either a plurality of low-friction bearings or a spiral member operably attached thereto along its length, thereby defining the integrated torque jacket system. The integrated torque jacket system resides within the flexible guide tube with a close fit that allows for rotation and axial translation of the integrated torque jacket system within the guide tube interior. The integrated torque jacket system serves to transfer torque and axial translation applied at its proximal end to the distal end to rotate and axially translate the optical probe within the guide tube.
    Type: Application
    Filed: May 27, 2015
    Publication date: December 10, 2015
    Inventors: Venkata Adiseshaiah Bhagavatula, Theresa Chang, Klaus Hartkorn, Mark Alan McDermott, Stephen Quenton Smith