Patents by Inventor Stephen R. Dunne

Stephen R. Dunne has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6689273
    Abstract: Heavy hydrocarbons are upgraded to higher value distillates in a hydrocarbon conversion process which employs several parallel on-stream reaction zones which each contain both hydrotreating and hydrocracking catalyst beds. The feed and liquid recycled from the bottom of the reaction zone is charged to the top of the uppermost catalyst bed. Hydrogen flow in the reaction zones is countercurrent to the descending liquid, and products are removed as vapor. The flow of feed to one of the reaction zones is periodically stopped to allow sequential on-stream hydrogenative regeneration of the catalysts within the reaction zones. This allows continuous commercial operation at conditions which are otherwise unfeasible.
    Type: Grant
    Filed: November 6, 2001
    Date of Patent: February 10, 2004
    Assignee: UOP LLC
    Inventors: Tom N. Kalnes, Stephen R. Dunne, Vasant P. Thakkar
  • Patent number: 6506510
    Abstract: A novel integrated system for the co-production of heat and electricity for residences or commercial buildings is based on the cracking of hydrocarbons to generate hydrogen for a fuel cell. Compared to prior art reforming methods for hydrogen production, the cracking reaction provides an input stream to the fuel cell that is essentially free of CO, a known poison to the anode catalyst in many fuel cell designs, such as PEM fuel cells. The cracking reaction is coupled with an air or steam regeneration cycle to reactivate that cracking catalyst for further use. This regeneration can provide a valuable source of heat or furnace fuel to the system. A novel control method for system adjusts the durations of the cracking and regeneration cycles to optimize the recovery of reaction heat.
    Type: Grant
    Filed: December 15, 2000
    Date of Patent: January 14, 2003
    Assignee: UOP LLC
    Inventors: Daniel R. Sioui, Gavin P. Towler, Anil R. Oroskar, Lubo Zhou, Stephen R. Dunne, Santi Kulprathipanja, Leonid B. Galperin, Frank S. Modica, Timur V. Voskoboinikov
  • Publication number: 20020134239
    Abstract: The present invention relates to a process for maintaining the humidity of an enclosed space within an acceptable operational range of relative humidity to minimize static electricity while passively removing at least a portion of organic contaminants from the enclosed space. The invention provides a simple, low cost solution to preventing damage to electronic disk drives using an adsorbent sheet material which requires less than about one-tenth the volume of adsorbent carriers which enclose the adsorbent material in a supporting envelope. The process employs a weak adsorbent such as high silica zeolite which effectively controls humidity at low operating temperatures and as the operating temperature increases is enabled to adsorb contaminants by reduced affinity for water.
    Type: Application
    Filed: February 15, 2002
    Publication date: September 26, 2002
    Inventors: Man-Wing Tang, Mark M. Davis, Syed M. Taqvi, Stephen R. Dunne, Peter K. Coughlin
  • Patent number: 6398889
    Abstract: Molecular sieve zeolites are incorporated in the inflator device to assist in the inflation of airbags in passenger vehicles. The pre-loading of the molecular sieve zeolites with gases such as air or nitrogen or carbon dioxide provides for rapid airbag inflation and following inflation, additionally provides the remediation of at least a portion of the toxic waste gases generated by the exploding inflator device. Molecular sieve zeolites, particularly zeolites X, having been exchanged with lithium or calcium, provide high-capacity gas storage and enhanced toxic waste gas adsorption. The use of molecular sieve zeolites reduces risk of injury to occupants of vehicles from exposure to hot, toxic waste gases following airbag deployment.
    Type: Grant
    Filed: February 28, 2001
    Date of Patent: June 4, 2002
    Assignee: UOP LLC
    Inventor: Stephen R. Dunne
  • Publication number: 20020007887
    Abstract: Molecular sieve zeolites are incorporated in the inflator device to assist in the inflation of airbags in passenger vehicles. The pre-loading of the molecular sieve zeolites with gases such as air or nitrogen or carbon dioxide provides for rapid airbag inflation and following inflation, additionally provides the remediation of at least a portion of the toxic waste gases generated by the exploding inflator device. Molecular sieve zeolites, particularly zeolites X, having been exchanged with lithium or calcium, provide high-capacity gas storage and enhanced toxic waste gas adsorption. The use of molecular sieve zeolites reduces risk of injury to occupants of vehicles from exposure to hot, toxic waste gases following airbag deployment.
    Type: Application
    Filed: February 28, 2001
    Publication date: January 24, 2002
    Inventor: Stephen R. Dunne
  • Patent number: 6312586
    Abstract: Heavy hydrocarbons are upgraded to higher value distillates in a hydrocarbon conversion process which employs several parallel reaction zones which each contain both hydrotreating and hydrocracking catalyst beds. The feed and liquid recycle from the bottom of the reaction zone is charged to the top of the uppermost catalyst bed. Hydrogen flow is countercurrent to the descending liquid, and products are removed overhead through vapor-liquid contactors. The flow of feed to one of the reaction zones is periodically stopped to allow sequential on-stream hydrogenative regeneration of the catalysts within the reaction zone.
    Type: Grant
    Filed: September 27, 1999
    Date of Patent: November 6, 2001
    Assignee: UOP LLC
    Inventors: Tom N. Kalnes, Stephen R. Dunne, Vasant P. Thakkar
  • Patent number: 6251200
    Abstract: Molecular sieve zeolites are incorporated in the inflator device to assist in the inflation of airbags in passenger vehicles. The pre-loading of the molecular sieve zeolites with gases such as air or nitrogen or carbon dioxide provides for rapid airbag inflation and following inflation, additionally provides the remediation of at least a portion of the toxic waste gases generated by the exploding inflator device. Molecular sieve zeolites, particularly zeolites X, having been exchanged with lithium or calcium, provide high-capacity gas storage and enhanced toxic waste gas adsorption. The use of molecular sieve zeolites reduces risk of injury to occupants of vehicles from exposure to hot, toxic waste gases following airbag deployment.
    Type: Grant
    Filed: June 29, 1999
    Date of Patent: June 26, 2001
    Assignee: UOP LLC
    Inventor: Stephen R. Dunne
  • Patent number: 6102107
    Abstract: A sorption cooling exchanger module and a process for its use in sorption cooling processes is described. The apparatus, provides high efficiency sorption cooling operations by maintaining a characteristic diffusion distance between fin plates such that the sorption cooling process can be carried out with short cycle times which increase the efficiency of the sorption cooling process and increases the specific power. The apparatus comprises an adsorption zone comprising an adsorbent layer comprising a coating of adsorbent or comprising a paper layer containing a selective adsorbent. For sorption cooling processes, the heat transfer zone is disposed in tubes disposed normal to the fin plates. The apparatus provides an opportunity to provide an adsorber/generator module having a high fin plate density per unit length of tube without the characteristic diffusion distance becoming equal to the height of the fin from the tube resulting in an improvement in efficiency.
    Type: Grant
    Filed: December 11, 1998
    Date of Patent: August 15, 2000
    Assignee: UOP LLC
    Inventor: Stephen R. Dunne
  • Patent number: 5953927
    Abstract: A process is disclosed for producing a chilled water stream by the integration of a sorption cooling section with a fluid catalytic cracking (FCC) process. The hot and cold working fluids for operation of the sorption cooling section are withdrawn directly from liquid streams in the FCC process in a novel flow scheme which employs a side draw stream to provide the hot working fluid and the liquid condensed from the overhead of the FCC main fractionator as the cold working fluid. The hot exit stream and the warm exit stream are cross-exchanged to smooth out the temperature variations which reduce the size and operating cost of producing the chilled stream. Potential damage to equipment and variation operations can be avoided by selecting the location of the side draw stream to avoid the accumulation of non-condensables in the heat exchange equipment.
    Type: Grant
    Filed: June 11, 1998
    Date of Patent: September 21, 1999
    Assignee: UOP LLC
    Inventors: Constante P. Tagamolila, Stephen R. Dunne
  • Patent number: 5823003
    Abstract: The present invention is a process for controlling a sorption cooling or heating process which employs an adsorption zone in fluid communication with a refrigeration circuit to pass desorbed vapor upon heating to a condenser and to adsorb refrigerant vapor from an evaporator when cooled. The process is cyclic and comprises heating the adsorption zone during a desorption step and cooling the adsorption zone during an adsorption step. The heating and cooling of the adsorption zone wherein a heat exchange zone is in intimate indirect thermal contact with the adsorption zone is provided during a cyclic process by alternating the flow of a working fluid at a hot source temperature or a working fluid at a cold source temperature through the heat exchange zone to provide the heating and cooling.
    Type: Grant
    Filed: May 2, 1997
    Date of Patent: October 20, 1998
    Assignee: UOP LLC
    Inventors: Frank S. Rosser, Jr., Stephen R. Dunne
  • Patent number: 5802870
    Abstract: A process and a system are disclosed for sorption heating and cooling which comprise at least 2 sorption zones. Each sorption zone comprises a heat transfer zone and an adsorption zone containing a sorbent such that the heat transfer zone is in intimate thermal contact with the adsorption zone to permit an essentially uniform temperature lengthwise through the sorption zone and thereby employ essentially all of the sorbent in the process at all times. The process comprises passing heat transfer streams such as a hot stream, a cold stream, and a recirculation stream through the heat transfer zone and routing a refrigerant through the adsorption zone of each sorption zone to affect a desorption stroke, an intermediate stroke and an adsorption stroke in the adsorption zone. Rotary and multi-port valves are employed to circulate the refrigerant and the heat transfer streams. The resulting sorption cooling process achieves a significantly higher coefficient of performance than the prior art.
    Type: Grant
    Filed: May 2, 1997
    Date of Patent: September 8, 1998
    Assignee: UOP LLC
    Inventors: Edward Charles Arnold, Stephen R. Dunne, Syed M. Taqvi
  • Patent number: 5768904
    Abstract: A process and a control system are disclosed for continuous cooling of a condensable process stream by the integration of a sorption cooling section for producing a chilled stream therewith. The condensable process stream is cooled with a cooled hot exit stream from the sorption cooling section to provide a hot working fluid stream to desorb an adsorption zone in the sorption cooling zone. A cold working fluid stream comprising a condensed portion of the condensable stream is passed to the sorption cooling section to facilitate adsorption in another adsorption zone in the sorption cooling section and a warm exit stream is withdrawn. The hot exit stream and the warm exit stream are cross-exchanged to smooth out the temperature variations which reduce the size and operating cost of producing the chilled stream.
    Type: Grant
    Filed: May 2, 1997
    Date of Patent: June 23, 1998
    Assignee: UOP LLC
    Inventors: Constante P. Tagamolila, Stephen R. Dunne
  • Patent number: 5669962
    Abstract: A cyclic process is provided for drying a compressed gas using at least two shell and tube adsorber heat exchangers each having a shell-side passage and a tube-side passage wherein the tubes have an interior surface which is uniformly coated with a solid adsorbent. In the operation of the process, a feed gas at ambient conditions is passed to the shell-side passage of the first adsorber to cool the adsorber and heat the feed gas stream to provide a first exchanged stream. The first exchanged stream is compressed and passed to the shell-side passage of another adsorber heat exchanger to provide a second exchanged stream. The second exchanged stream is returned to the tube-side passage of the first adsorber heat exchanger wherein the second exchanged stream is contacted with the adsorbent to adsorb moisture and thereby produce a dry compressed gas stream. A portion of the dry compressed gas stream is employed to purge the tube-side passage of other adsorber heat exchangers.
    Type: Grant
    Filed: March 15, 1996
    Date of Patent: September 23, 1997
    Assignee: UOP
    Inventor: Stephen R. Dunne
  • Patent number: 5667560
    Abstract: A process and apparatus for the dehumidification and VOC odor remediation of an air stream withdrawn from the passenger compartment of a transportation vehicle is disclosed which employs a continuously rotating wheel support and adsorbent selective for the adsorption of water and VOCs. The wheel is coated with a zeolite adsorbent selected from the low cerium rare earth exchanged zeolite Y-84, a rare earth exchanged zeolite LZ-210, a low cerium rare earth exchanged zeolite Y-64, and mixtures thereof. It was discovered that faujasites which have a zeolite structure including .beta.-cages within which are located tri-valent cations exhibit a Type 1M adsorption isotherm for water which provides a good driving force for adsorption at low partial pressures and a heat of adsorption which is slightly greater than the heat of vaporization/condensation of water.
    Type: Grant
    Filed: April 18, 1996
    Date of Patent: September 16, 1997
    Assignee: UOP
    Inventor: Stephen R. Dunne
  • Patent number: 5620502
    Abstract: A process and apparatus for the recovery and purification of a contaminated refrigerant withdrawn from a refrigeration or refrigerant recovery system which employs a compressor and an adsorbent selective for the adsorption of halogenated hydrocarbons. The adsorbent is selected from the group consisting of silicalite, faujasites, steamed and rare earth exchanged zeolite Y, mordenite, ZSM-5 and mixtures thereof, and more particularly the group consisting of a low cerium rare earth exchanged zeolite Y-84, a low cerium rare earth exchanged zeolite LZ-210, Breck Structure Six, ECR-32, and mixtures thereof. A significant increase in the capacity of these adsorbents over conventional adsorbents combined with the use of novel process steps to recover, purify and return a purified refrigerant to the refrigeration system result in significant cost savings at reduced risk of release of halogenated hydrocarbons to the environment.
    Type: Grant
    Filed: June 7, 1995
    Date of Patent: April 15, 1997
    Assignee: UOP
    Inventors: Stephen R. Dunne, Mark T. Staniulis, Alan P. Cohen
  • Patent number: 5535817
    Abstract: A desiccant cooling apparatus and process using a solid adsorbent and refrigerant wherein the solid adsorbent is selected from the group consisting of zeolite Y-45 zeolite Y-85, a low cerium rare earth exchanged Y-84 and a rare earth exchanged LZ-210, and the adsorbent is bonded directly to the heat exchange tubes within the device by a novel slip coating process resulted in significant improvements in thermal efficiency and overall performance.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: July 16, 1996
    Assignee: UOP
    Inventor: Stephen R. Dunne
  • Patent number: 5531068
    Abstract: A process for treating an engine exhaust gas stream is disclosed. The process involves arranging a catalyst bed and a molecular sieve bed side by side with a connecting pipe between and parallel to the two beds. When the engine is first started, the cool exhaust is flowed through the catalyst bed, then through the connecting pipe, then through the molecular sieve bed and finally discharged to the atmosphere. When the molecular sieve bed reaches a temperature of about 150.degree. C. to about 200.degree. C. the exhaust stream is diverted such that it is first flowed through the molecular sieve bed, to desorb the adsorbed hydrocarbons, and then through the catalyst bed and finally discharged to the atmosphere. Finally, when all the hydrocarbons are desorbed from the molecular sieve bed, the exhaust stream is diverted such that it is flowed through the catalyst bed and then discharged to the atmosphere.
    Type: Grant
    Filed: June 19, 1995
    Date of Patent: July 2, 1996
    Assignee: UOP
    Inventors: Lawrence T. Kass, Timothy M. Cowan, Dennis Reinertsen, Stephen R. Dunne
  • Patent number: 5518977
    Abstract: A desiccant cooling apparatus and process using a solid adsorbent and refrigerant wherein the solid adsorbent is selected from the group consisting of zeolite Y-85, a low cerium rare earth exchanged Y-84 and a rare earth exchanged LZ-210, and the adsorbent is bonded directly to the heat exchange tubes within the device by a novel slip coating process resulted in significant improvements in thermal efficiency and overall performance.
    Type: Grant
    Filed: June 5, 1995
    Date of Patent: May 21, 1996
    Assignee: UOP
    Inventors: Stephen R. Dunne, Albert S. Behan
  • Patent number: 5512083
    Abstract: A process and apparatus for the dehumidification and VOC odor remediation of an air stream withdrawn from the passenger compartment of a transportation vehicle is disclosed which employs a continuously rotating wheel support and adsorbent selective for the adsorption of water and VOCs. The wheel is coated with zeolite adsorbent selected from the group consisting of zeolite Y-74, zeolite Y-84, zeolite Y-85, a low cerium rare earth exchanged zeolite Y-84, a rare earth exchanged zeolite LZ-210 and mixtures thereof. A surprisingly significant increase in the thermal efficiency is possible as a result of the lower regeneration temperature of the adsorbent and the use of novel process steps.
    Type: Grant
    Filed: January 17, 1995
    Date of Patent: April 30, 1996
    Assignee: UOP
    Inventor: Stephen R. Dunne
  • Patent number: 5503222
    Abstract: A carousel heat exchanger is provided for air conditioning or waste heat recovery applications. The carousel heat exchanger includes a plurality of heater tubes disposed radially about a rotational axis. Each of the heater tubes is sealed and has a hollow bore which is uniformly lined with a solid adsorbent and contains a refrigerant. A baffle is disposed about the rotational axis such that to the heater tubes extend transversely therethrough. The baffle defines an outer zone to the outside of the baffle and an inner zone to the inside of the baffle and divides the heater tubes into a first internal zone of the heater tubes located in the outer zone and a second internal zone of the heater tubes located in the inner zone. A plurality of vanes is disposed radially along the rotational axis. The vanes extend transversely from both sides of the baffle, defining a plurality of axial flow segments that subdivide the inner and outer zones.
    Type: Grant
    Filed: July 28, 1994
    Date of Patent: April 2, 1996
    Assignee: UOP
    Inventor: Stephen R. Dunne