Patents by Inventor Stephen Ruatta

Stephen Ruatta has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9230888
    Abstract: A semiconductor assembly comprises a semiconductor wafer, an adhesive coating disposed on the back side of the wafer, and a bare dicing tape, preferably UV radiation transparent. The assembly is prepared by the method comprising (a) providing a semiconductor wafer, (b) disposing a wafer back side coating on the semiconductor wafer, (c) partially curing the wafer back side coating to the extent that it adheres to the back side of the wafer and remains tacky, and (d) contacting the bare dicing tape to the partially cured and tacky wafer back side coating, optionally with heat and pressure.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: January 5, 2016
    Assignee: Henkel IP & Holding GmbH
    Inventors: Gyanendra Dutt, Qizhuo Zhuo, Elizabeth Hoang, Stephen Ruatta
  • Publication number: 20140225283
    Abstract: A semiconductor assembly comprises a semiconductor wafer, an adhesive coating disposed on the back side of the wafer, and a bare dicing tape, preferably UV radiation transparent. The assembly is prepared by the method comprising (a) providing a semiconductor wafer, (b) disposing a wafer back side coating on the semiconductor wafer, (c) partially curing the wafer back side coating to the extent that it adheres to the back side of the wafer and remains tacky, and (d) contacting the bare dicing tape to the partially cured and tacky wafer back side coating, optionally with heat and pressure.
    Type: Application
    Filed: March 15, 2013
    Publication date: August 14, 2014
    Applicant: HENKEL CORPORATION
    Inventors: Gyanendra Dutt, Qizhuo Zhuo, Elizabeth Hoang, Stephen Ruatta
  • Publication number: 20060119012
    Abstract: The invention relates to a method producing parts using laser sintering wherein a fusible powder is exposed to a plurality of laser scans at controlled energy levels and for time periods to melt and densify the powder and in the substantial absence of particle bonding outside the fusion boundary. Strength is improved up to 100% compared to previous methods. An example includes a relatively high energy initial scan to melt the powder followed by lower energy scans controlled to densify the melt and separated in time to dissipate heat to the surrounding part cake. The rate and extent to which the powder particles are fused together can be controlled so that each successive scan can be used to fuse the particles together in discreet incremental steps. As a result, the final dimensions of the part and its density and mechanical properties can be improved compared to conventional methods and part growth avoided.
    Type: Application
    Filed: December 7, 2004
    Publication date: June 8, 2006
    Applicant: 3D Systems, Inc.
    Inventors: Stephen Ruatta, Khalil Moussa