Patents by Inventor Stephen Scott Furkay

Stephen Scott Furkay has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6486510
    Abstract: A FET with reduced reverse short channel effects is described, as well as a method to make said FET. Germanium is implanted throughout a semiconductor substrate at an intensity and dose such that a peak ion concentration is created below the source and drain of the FET. The germanium can be implanted prior to gate and source and drain formation, and reduces the reverse short channel effect normally seen in FETs. The short channel effect normally occurring in FETs is not negatively impacted by the germanium implant.
    Type: Grant
    Filed: November 12, 2001
    Date of Patent: November 26, 2002
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey Scott Brown, Stephen Scott Furkay, Robert J. Gauthier, Jr., Dale Warner Martin, James Albert Slinkman
  • Publication number: 20020063294
    Abstract: A FET with reduced reverse short channel effects is described, as well as a method to make said FET. Germanium is implanted throughout a semiconductor substrate at an intensity and dose such that a peak ion concentration is created below the source and drain of the FET. The germanium can be implanted prior to gate and source and drain formation, and reduces the reverse short channel effect normally seen in FETs. The short channel effect normally occurring in FETs is not negatively impacted by the germanium implant.
    Type: Application
    Filed: November 12, 2001
    Publication date: May 30, 2002
    Applicant: INTERNATIONAL BUSINESS MACHINES
    Inventors: Jeffrey Scott Brown, Stephen Scott Furkay, Robert J. Gauthier, Dale Warner Martin, James Albert Slinkman
  • Patent number: 6352912
    Abstract: A FET with reduced reverse short channel effects is described, as well as a method to make said FET. Germanium is implanted throughout a semiconductor substrate at an intensity and dose such that a peak ion concentration is created below the source and drain of the FET. The germanium can be implanted prior to gate and source and drain formation, and reduces the reverse short channel effect normally seen in FETs. The short channel effect normally occurring in FETs is not negatively impacted by the germanium implant.
    Type: Grant
    Filed: March 30, 2000
    Date of Patent: March 5, 2002
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey Scott Brown, Stephen Scott Furkay, Robert J. Gauthier, Jr., Dale Warner Martin, James Albert Slinkman
  • Patent number: 6097068
    Abstract: A semiconductor device and method of fabrication for such device in which a P- epitaxial layer is positioned above a P++ substrate. A P++ buried layer implant is positioned within the device between the P++ substrate and the P- epitaxial layer. A connecting p+ implant is placed within the epitaxial layer above the buried p+ blanket layer implant. In one exemplary embodiment, the device includes a shallow P-well with the P+ connecting implant in a position within the epitaxial layer connecting the shallow P-well and the buried P+ blanket implant layer.
    Type: Grant
    Filed: January 22, 1998
    Date of Patent: August 1, 2000
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey Scott Brown, Stephen Scott Furkay, Robert John Gauthier, Jr., Xiaowei Tian, Minh Ho Tong, Steven Howard Voldman
  • Patent number: 6057184
    Abstract: A semiconductor device and method of fabrication for such device in which a P- epitaxial layer is positioned above a P++ substrate. A P++ buried layer implant is positioned within the device between the P++ substrate and the P- epitaxial layer. A connecting p+ implant is placed within the epitaxial layer above the buried p+ blanket layer implant. In one exemplary embodiment, the device includes a shallow P-well with the P+ connecting implant in a position within the epitaxial layer connecting the shallow P-well and the buried P+ blanket implant layer.
    Type: Grant
    Filed: March 21, 1997
    Date of Patent: May 2, 2000
    Assignee: International Business Machines Corporation
    Inventors: Jeffrey Scott Brown, Stephen Scott Furkay, Robert John Gauthier, Jr., Xiaowei Tian, Minh Ho Tong, Steven Howard Voldman
  • Patent number: 5896303
    Abstract: Disclosed is a method of improved grid generation for semiconductor device simulation. In particular, the invention includes a simple method for locating critical interfaces (e.g., oxide-silicon interfaces) and then utilizing the information to generate finer mesh elements near those boundaries where device behavior is most critical. The method of identifying critical interfaces includes the steps of examining the boundary data for each material region in the device, and then generating normal lines between adjacent boundaries to identify "thin" regions, which are generally associated with the critical interfaces. Once this occurs, a recursive subdivision algorithm may be utilized to generate a grid whose element dimensions are dependent upon their proximity to identified critical regions.
    Type: Grant
    Filed: October 11, 1996
    Date of Patent: April 20, 1999
    Assignee: International Business Machines Corporation
    Inventors: Stephen Scott Furkay, Jeffrey Bowman Johnson