Patents by Inventor Stephen Smith

Stephen Smith has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20160232185
    Abstract: Examples of a no rollback threshold for an audit trail are disclosed. In one example implementation according to aspects of the present disclosure, a method may include processing, by a computing system, a database transaction, and determining, by the computing system, whether a transaction span of the transaction exceeds a no rollback threshold for an audit trail. The method may include, in response to determining that the transaction span exceeds the no rollback threshold, converting, by the computing system, the transaction into a no rollback transaction. Additionally, the method may include, in response to determining that the transaction span exceeds no rollback threshold, abandoning, by the computing system, the transaction if an error is encountered during the processing the transaction.
    Type: Application
    Filed: September 30, 2013
    Publication date: August 11, 2016
    Inventors: Sean L. Broeder, Gary Stephen Smith, Shang-Sheng Tung, John Stewart de Roo
  • Publication number: 20160228391
    Abstract: The invention relates to matrix and layer compositions comprising a first polymer. The matrix and layer compositions are useful in the delivery of bioactives. In particular, the matrices and layers may have advantageous properties including mechanical properties and protection of bioactives and may also provide for pH-dependent release of a bioactive.
    Type: Application
    Filed: April 20, 2016
    Publication date: August 11, 2016
    Inventors: Houston Stephen Smith, Matthew J. Fischer, Graciela B. Arhancet, Rangarani Karnati, John A. Hume, Xiaojun Wang
  • Patent number: 9404876
    Abstract: Automated isothermal titration micro calorimetry (ITC) system comprising a micro calorimeter with a sample cell and a reference cell, the sample cell is accessible via a sample cell stem and the reference cell is accessible via a reference cell stem. The system further comprises an automatic pipette assembly comprising a syringe with a titration needle arranged to be inserted into the sample cell for supplying titrant, the pipette assembly comprises an activator for driving a plunger in the syringe, a pipette translation unit supporting the pipette assembly and being arranged to place pipette in position for titration, washing and filling operations, a wash station for the titrant needle, and a cell preparation unit arranged to perform operations for replacing the sample liquid in the sample cell when the pipette is placed in another position than the position for titration.
    Type: Grant
    Filed: June 11, 2015
    Date of Patent: August 2, 2016
    Assignee: MALVERN INSTRUMENTS INCORPORATED
    Inventors: Martin Broga, Phillip Price, Stephen Smith
  • Patent number: 9405941
    Abstract: An apparatus and method for simultaneous programming of data to individually addressed Tags. Tags contain a being addressed indicator that allows for processing of simultaneous programming commands. Specified Tags are individually pre-addressed to receive simultaneous programming. Tag data is programmed simultaneously for all Tags in a specified group of Tags. Data is individually verified for each specified Tag in the group of Tags.
    Type: Grant
    Filed: January 20, 2012
    Date of Patent: August 2, 2016
    Assignee: Ruizhang Technology Limited Company
    Inventor: John Stephen Smith
  • Patent number: 9386949
    Abstract: The device (10) disclosed herein assists in the diagnosis and classification of neurodegenerative diseases through the assessment of a subject's visuo-spatial ability. The device (10) has a touch-screen display (11) into which a user can input data utilizing a stylus (13) or the like. A position reader is provided, linked to a position data storage means and also a timer to link a time value to said position data, the time value being stored in a time data storage means. Storage means is also provided for preset-value data relating to known data on medical conditions, with the preset-value data having been produced in accordance with an evolutionary algorithm. A comparator compares the user input data with the preset-value data, and the result is output.
    Type: Grant
    Filed: July 15, 2013
    Date of Patent: July 12, 2016
    Assignee: The University of York
    Inventors: Stephen Smith, Michael Adam Lones
  • Patent number: 9392415
    Abstract: Methods, program products, and systems for using a location fingerprint database to determine a location of a mobile device are described. A mobile device can use location fingerprint data received from a server to determine a location of the mobile device at the venue. The mobile device can obtain, from a sensor of the mobile device, a vector of sensor readings, each sensor reading can measure an environment variable, e.g., a signal received by the sensor from a signal source. The mobile device can perform a statistical match between the vector and the location fingerprint data. The mobile device can then estimate a current location of the mobile device based on the statistical match.
    Type: Grant
    Filed: September 30, 2014
    Date of Patent: July 12, 2016
    Assignee: Apple Inc.
    Inventors: David Benjamin Millman, Johan Olav Bergerengen, Robert Mayor, Brian Stephen Smith
  • Publication number: 20160197652
    Abstract: In an RFID system having at least one tag and at least one reader, a tag and a reader can, in one embodiment, use a pair of keys, known to both the tag and the reader, to restrict the interaction of the tag and the reader so that tags having the pair of keys interact only with readers that use the pair of keys.
    Type: Application
    Filed: October 8, 2015
    Publication date: July 7, 2016
    Inventor: John Stephen Smith
  • Publication number: 20160147352
    Abstract: An optically transparent force sensor that may compensate for environmental effects, including, for example, variations in temperature of the device or the surroundings. In some examples, two force-sensitive layers are separated by a compliant layer. The relative electrical response of the two force-sensitive layers may be used to compute an estimate of the force of a touch that reduces the effect of variations in temperature. In some examples, piezoelectric films having anisotropic strain properties are used to reduce the effects of temperature.
    Type: Application
    Filed: June 3, 2015
    Publication date: May 26, 2016
    Inventors: Sinan Filiz, James E. Pedder, Charley T. Ogata, John Stephen Smith, Dhaval Chandrakant Patel, Shin John Choi, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner
  • Publication number: 20160147353
    Abstract: An optically transparent force sensor element is compensated for effects of environment by comparing a force reading from a first force-sensitive component with a second force-sensitive components. The first and second force-sensitive components disposed on opposite sides of a flexible substrate within a display stack.
    Type: Application
    Filed: June 3, 2015
    Publication date: May 26, 2016
    Inventors: Sinan Filiz, James E. Pedder, Charley T. Ogata, John Stephen Smith, Dhaval Chandrakant Patel, Shin John Choi, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner
  • Publication number: 20160139716
    Abstract: A device configured to sense a touch on a surface of the device. The device includes a cover and a force-sensing structure disposed below the cover. The force-sensing structure may be positioned below a display and used in combination with other force-sensing elements to estimate the force of a touch on the cover of a device.
    Type: Application
    Filed: June 1, 2015
    Publication date: May 19, 2016
    Inventors: Sinan Filiz, Martin P. Grunthaner, John Stephen Smith, Charley T. Ogata, Christian M. Sauer, Shin John Choi, Christopher J. Butler, Steven J. Martisauskas
  • Publication number: 20160139717
    Abstract: An optically transparent force sensor, which may be used as input to an electronic device. The optically transparent force sensor may be configured to compensate for variations in temperature using two or more force-sensitive components that are formed from materials having different temperature- and strain-dependent responses.
    Type: Application
    Filed: June 3, 2015
    Publication date: May 19, 2016
    Inventors: Sinan Filiz, James E. Pedder, Charley T. Ogata, John Stephen Smith, Dhaval Chandrakant Patel, Shin John Choi, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner
  • Publication number: 20160117582
    Abstract: An RFID transponder in one embodiment comprises a radio frequency (RF) transceiver, processing logic coupled to the RF transceiver, a switch coupled to the processing logic, a tunneling device coupled to the switch and a differential sensing circuit having a first input coupled to the tunneling device and a second input coupled to a predetermined reference voltage. In one embodiment, the tunneling device can discharge to a voltage below the predetermined reference voltage.
    Type: Application
    Filed: October 29, 2015
    Publication date: April 28, 2016
    Inventor: John Stephen Smith
  • Publication number: 20160103545
    Abstract: An optically transparent force sensor that may compensate for environmental effects, including, for example, variations in temperature of the device or the surroundings. In some examples, two force-sensitive layers are separated by a compliant layer. The relative electrical response of the two force-sensitive layers may be used to compute an estimate of the force of a touch that reduces the effect of variations in temperature. In some examples, piezoelectric films having anisotropic strain properties are used to reduce the effects of temperature.
    Type: Application
    Filed: December 17, 2015
    Publication date: April 14, 2016
    Inventors: Sinan Filiz, James E. Pedder, Charley T. Ogata, John Stephen Smith, Dhaval Chandrakant Patel, Shin John Choi, Brian Q. Huppi, Christopher J. Butler, Martin P. Grunthaner
  • Publication number: 20160103544
    Abstract: A device configured to sense a touch on a surface of the device. The device includes a cover and a force-sensing structure disposed below the cover. The force-sensing structure may be positioned below a display and used in combination with other force-sensing elements to estimate the force of a touch on the cover of a device.
    Type: Application
    Filed: December 16, 2015
    Publication date: April 14, 2016
    Inventors: Sinan Filiz, Martin P. Grunthaner, John Stephen Smith, Charley T. Ogata, Christian M. Sauer, Shin John Choi, Christopher J. Butler, Steven J. Martisauskas
  • Publication number: 20160091593
    Abstract: Methods, program products, and systems for building a location fingerprint database for a transit system are described. The transit system can be a subway system including underground train stations and routes where location determination using GPS signals is difficult or impossible. A sampling device can measure signals, e.g., radio frequency (RF) signals detected at the stations or on the routes. A location server can construct a location fingerprint for each of the stations and the routes. Each location fingerprint can represent expected signal measurements by a user device if the user device is located at the respective station or route. The location server can provide the location fingerprint to a user device for the user device to determine a location of the user device within the station or on the route.
    Type: Application
    Filed: September 30, 2014
    Publication date: March 31, 2016
    Inventors: David Benjamin Millman, Johan Olav Bergerengen, Robert Mayor, Brian Stephen Smith
  • Publication number: 20160094021
    Abstract: An isolator protection device can include a housing flaying at least one wall and a first coupling feature, where the at least one all forms a cavity, where the first coupling feature is configured to couple to an arrester, and where the at least one wall is configured to house an isolator body of an isolator within the cavity. The isolator protection device can also include a securing device disposed within the cavity, where the securing device is configured to secure a stud of the isolator to the isolator body during normal operating conditions.
    Type: Application
    Filed: September 29, 2015
    Publication date: March 31, 2016
    Applicant: COOPER TECHNOLOGIES COMPANY
    Inventors: Michael M. Ramarge, Timothy Stephen Smith
  • Publication number: 20160094954
    Abstract: Methods, program products, and systems for using multiple sensors to determine a location fingerprint are described. A sampling device can measure RF signals detected at a train station of a transit system or a route of the transit system. The sampling device, or a location server receiving the measurements, can filter RF signal measurements using one or more readings from sensors coupled to the sampling device and that are different from RF receivers. The readings can be taken concurrently with the RF signal measurements. These readings, designated as motion cues, can include motion sensor readings, barometer readings, or magnetometer readings. Using the motion cues, the sampling device or location server can distinguish different platforms of a station of the transit system and different levels of the station, or filter out RF signal measurements that may have been inaccurate, e.g., as caused by disturbances from a train entering or leaving a station.
    Type: Application
    Filed: September 30, 2014
    Publication date: March 31, 2016
    Inventors: David Benjamin Millman, Johan Olav Bergerengen, Robert Mayor, Brian Stephen Smith
  • Publication number: 20160094950
    Abstract: Methods, program products, and systems for using a location fingerprint database to determine a location of a mobile device are described. A mobile device can use location fingerprint data received from a server to determine a location of the mobile device at the venue. The mobile device can obtain, from a sensor of the mobile device, a vector of sensor readings, each sensor reading can measure an environment variable, e.g., a signal received by the sensor from a signal source. The mobile device can perform a statistical match between the vector and the location fingerprint data. The mobile device can then estimate a current location of the mobile device based on the statistical match.
    Type: Application
    Filed: September 30, 2014
    Publication date: March 31, 2016
    Inventors: David Benjamin Millman, Johan Olav Bergerengen, Robert Mayor, Brian Stephen Smith
  • Patent number: 9284589
    Abstract: Specific binding members directed to eotaxin-1, in particular human antibodies and antibody fragments against human eotaxin-1 and especially those which neutralize eotaxin-1 activity. The antibodies VH and/or VL domain of the scFv fragment herein termed CAT-212 and of the IgG4 antibody herein termed CAT 213. One or more complementary determining regions (CDRs) of the CAT-212/-213 VH and/or VL domains, especially VH CRD3 in other antibody framework regions. Compositions containing specific binding members, and their use in methods of inhibiting or neutralizing eotaxin, including methods of treatment of the human or animal body by therapy.
    Type: Grant
    Filed: March 24, 2014
    Date of Patent: March 15, 2016
    Assignee: Medimmune Limited
    Inventors: Tristan John Vaughan, Alison Jane Wilton, Stephen Smith, Sarah Helen Main
  • Publication number: 20160062949
    Abstract: Coarse location estimation for mobile devices is disclosed for detecting mobile device presence at general locations of interest and switching operating modes and services for one or more location context aware applications. In some implementations, sensor data is received from a plurality of data sources at a location. For each data source, a first probability is estimated that the mobile device is at the location based on sensor data from the data sources. A second probability is estimated that the mobile device is not at the location based on sensor data from the data sources. The first and second estimated probabilities are statistically combined to generate a third estimated probability that the mobile device is at the location.
    Type: Application
    Filed: September 5, 2014
    Publication date: March 3, 2016
    Inventors: Brian Stephen Smith, Joseph Ding-Jiu Huang, Ilya K. Veygman, Robert Mayor, David Benjamin Millman, Abhinav R. Patel, Vitali Lovich