Patents by Inventor Stephen W. Farrer
Stephen W. Farrer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Publication number: 20240215822Abstract: An eye measurement system includes an optical system. The eye measurement system is disposed in a housing which includes an aperture for providing light to and from the optical system and a subject's eye while the subject is separated and spaced apart from the housing, and the eye is not maintained in a fixed positional relationship with respect to the housing. An optical system movement arrangement moves the optical system. An automatic eye tracking arrangement ascertains a current positional relationship of the eye with respect to the optical system without human assistance, and in response thereto controls the optical system movement arrangement to move the optical system into a predetermined positional relationship with respect to the eye, for measurement of the eye, without human assistance. The eye measurement system can make objective, and/or subjective, refraction measurements of the eye.Type: ApplicationFiled: December 30, 2023Publication date: July 4, 2024Inventors: Thomas Daniel Raymond, Stephen W. Farrer
-
Patent number: 11857259Abstract: An eye measurement system includes an optical system. The eye measurement system is disposed in a housing which includes an aperture for providing light to and from the optical system and a subject's eye while the subject is separated and spaced apart from the housing, and the eye is not maintained in a fixed positional relationship with respect to the housing. An optical system movement arrangement moves the optical system. An automatic eye tracking arrangement ascertains a current positional relationship of the eye with respect to the optical system without human assistance, and in response thereto controls the optical system movement arrangement to move the optical system into a predetermined positional relationship with respect to the eye, for measurement of the eye, without human assistance. The eye measurement system can make objective, and/or subjective, refraction measurements of the eye.Type: GrantFiled: April 7, 2022Date of Patent: January 2, 2024Assignee: Scintellite, LLCInventors: Thomas Daniel Raymond, Stephen W Farrer
-
Publication number: 20220225876Abstract: An eye measurement system includes an optical system. The eye measurement system is disposed in a housing which includes an aperture for providing light to and from the optical system and a subject's eye while the subject is separated and spaced apart from the housing, and the eye is not maintained in a fixed positional relationship with respect to the housing. An optical system movement arrangement moves the optical system. An automatic eye tracking arrangement ascertains a current positional relationship of the eye with respect to the optical system without human assistance, and in response thereto controls the optical system movement arrangement to move the optical system into a predetermined positional relationship with respect to the eye, for measurement of the eye, without human assistance. The eye measurement system can make objective, and/or subjective, refraction measurements of the eye.Type: ApplicationFiled: April 7, 2022Publication date: July 21, 2022Inventors: Thomas Daniel Raymond, Stephen W Farrer
-
Patent number: 11324400Abstract: An eye measurement system includes an optical system. The eye measurement system is disposed in a housing which includes an aperture for providing light to and from the optical system and a subject's eye while the subject is separated and spaced apart from the housing, and the eye is not maintained in a fixed positional relationship with respect to the housing. An optical system movement arrangement moves the optical system. An automatic eye tracking arrangement ascertains a current positional relationship of the eye with respect to the optical system without human assistance, and in response thereto controls the optical system movement arrangement to move the optical system into a predetermined positional relationship with respect to the eye, for measurement of the eye, without human assistance. The eye measurement system can make objective, and/or subjective, refraction measurements of the eye.Type: GrantFiled: May 15, 2021Date of Patent: May 10, 2022Assignee: Scintellite, LLCInventors: Thomas Daniel Raymond, Stephen W Farrer
-
Publication number: 20220007934Abstract: An eye measurement system includes an optical system. The eye measurement system is disposed in a housing which includes an aperture for providing light to and from the optical system and a subject's eye while the subject is separated and spaced apart from the housing, and the eye is not maintained in a fixed positional relationship with respect to the housing. An optical system movement arrangement moves the optical system. An automatic eye tracking arrangement ascertains a current positional relationship of the eye with respect to the optical system without human assistance, and in response thereto controls the optical system movement arrangement to move the optical system into a predetermined positional relationship with respect to the eye, for measurement of the eye, without human assistance. The eye measurement system can make objective, and/or subjective, refraction measurements of the eye.Type: ApplicationFiled: May 15, 2021Publication date: January 13, 2022Inventors: Thomas Daniel Raymond, Stephen W Farrer
-
Patent number: 10849495Abstract: An optical coherence tomography (OCT) system includes: a light source; a multi-focal delay line; and a light detector. The multi-focal delay line includes: a positive lens; and an optical switch configured to: receive a light from the light source; selectively direct the sample light to the positive lens via a selected one of a plurality of light interfaces each located a different distance from the focal plane of the positive lens; and direct the sample light to an object to be measured. The light detector is configured to receive return light returned from the object to be measured in response to the sample light, and to receive a reference light produced from the light from the light source, and in response thereto to detect at least one interference signal. An associated OCT method may be performed with the OCT system.Type: GrantFiled: October 1, 2018Date of Patent: December 1, 2020Assignee: AMO Development, LLCInventors: Paul Pulaski, Daniel R. Neal, Thomas D. Raymond, Stephen W. Farrer, Daniel R. Hamrick, Richard J. Copland
-
Patent number: 10813550Abstract: An optical measurement system method for measuring a characteristic of a subject's eye use a probe beam having an infrared wavelength in the infrared spectrum to measure a refraction of the subject's eye at the infrared wavelength; capture at least two different Purkinje images at two different corresponding wavelengths from at least one surface of the lens of the subject's eye; determine from the at least two different Purkinje images a value for at least one parameter of the subject's eye; use the value of the at least one parameter to determine a customized chromatic adjustment factor for the subject's eye; and correct the measured refraction of the subject's eye at the infrared wavelength with the customized chromatic adjustment factor to determine a refraction of the subject's eye at a visible wavelength in the visible spectrum.Type: GrantFiled: January 16, 2019Date of Patent: October 27, 2020Assignee: AMO DEVELOPMENT, LLCInventors: Richard J. Copland, Daniel R. Neal, Thomas D. Raymond, Stephen W. Farrer
-
Patent number: 10583039Abstract: Improved devices, systems, and methods for planning cataract surgery on an eye of a patient incorporate results of prior corrective surgeries into a planned cataract surgery of a particular patient by driving an effective surgery vector function based on data from the prior corrective surgeries. The exemplary effective surgery vector employs an influence matrix which may allow improved refractive corrections to be generated so as to increase the overall efficacy of a cataract surgery by specifying one or more parameters of an intraocular lens (IOL) to be implanted during the cataract surgery.Type: GrantFiled: November 23, 2015Date of Patent: March 10, 2020Assignee: AMO WaveFront Sciences, LLCInventors: Thomas D. Raymond, Daniel R. Neal, Richard J. Copland, Wei Xiong, Paul Pulaski, Stephen W. Farrer, Carmen Canovas Vidal, Daniel R. Hamrick
-
Patent number: 10582846Abstract: Improved devices, systems, and methods for planning cataract surgery on an eye of a patient incorporate results of prior corrective surgeries into a planned cataract surgery of a particular patient by driving an effective surgery vector function based on data from the prior corrective surgeries. The exemplary effective surgery vector employs an influence matrix which may allow improved refractive corrections to be generated so as to increase the overall efficacy of a cataract surgery by specifying one or more parameters of an intraocular lens (IOL) to be implanted during the cataract surgery.Type: GrantFiled: November 23, 2015Date of Patent: March 10, 2020Assignee: AMO WaveFront Sciences, LLCInventors: Thomas D. Raymond, Daniel R. Neal, Richard J. Copland, Wei Xiong, Paul Pulaski, Stephen W. Farrer, Carmen Canovas Vidal, Daniel R. Hamrick
-
Patent number: 10582847Abstract: Improved devices, systems, and methods for planning cataract surgery on an eye of a patient incorporate results of prior corrective surgeries into a planned cataract surgery of a particular patient by driving an effective surgery vector function based on data from the prior corrective surgeries. The exemplary effective surgery vector employs an influence matrix which may allow improved refractive corrections to be generated so as to increase the overall efficacy of a cataract surgery by specifying one or more parameters of an intraocular lens (IOL) to be implanted during the cataract surgery.Type: GrantFiled: November 23, 2015Date of Patent: March 10, 2020Assignee: AMO WaveFront Sciences, LLCInventors: Thomas D. Raymond, Daniel R. Neal, Richard J. Copland, Wei Xiong, Paul Pulaski, Stephen W. Farrer, Carmen Canovas Vidal, Daniel R. Hamrick
-
Patent number: 10492680Abstract: A conical topographer includes: a flat panel display configured to display a light pattern and to project the light pattern onto a cornea of an eye disposed on a first side of the flat panel display; an optical system disposed on a second side of the flat panel display, the optical system being configured to receive and process reflected light from the cornea that passes through the flat panel display from the cornea to the optical system; a camera configured to receive the processed reflected light from the optical system and to capture therefrom a reflected light pattern from the cornea produced in response to the projected light pattern; and one or more processors configured to execute an algorithm to compare the projected light pattern to the reflected light pattern from the cornea, and to produce a topographic map of the cornea based on a result of the comparison.Type: GrantFiled: May 4, 2018Date of Patent: December 3, 2019Assignee: AMO WAVEFRONT SCIENCES, LLCInventors: Stephen W. Farrer, W. Shea Powers, Daniel R. Neal, Larry B. Voss
-
Patent number: 10456026Abstract: A system for predicting optical power for an intraocular lens based upon measured biometric parameters in a patient's eye includes: a biometric reader capable of measuring one or more biometric parameters of the patient's eye and obtaining at least one value for at least one of the one or more biometric parameters, and further measuring a representation of a corneal topography of the patient's eye; a processor; and a computer readable medium coupled to the processor and having stored thereon a program that upon execution causes the processor to: receive the at least one value; obtain a corneal spherical aberration (SA) based upon the representation of the corneal topography; and calculate an optimized optical power to obtain a desired postoperative condition by applying the received at least one value and the obtained corneal spherical aberration to a modified regression.Type: GrantFiled: April 13, 2016Date of Patent: October 29, 2019Assignee: AMO WaveFront Sciences, LLCInventors: Daniel R. Neal, Thomas D. Raymond, Richard J. Copland, Wei Xiong, Stephen W. Farrer, Paul D. Pulaski, Daniel R. Hamrick, Carmen Canovas Vidal, Pablo Artal
-
Publication number: 20190142269Abstract: An optical measurement system method for measuring a characteristic of a subject's eye use a probe beam having an infrared wavelength in the infrared spectrum to measure a refraction of the subject's eye at the infrared wavelength; capture at least two different Purkinje images at two different corresponding wavelengths from at least one surface of the lens of the subject's eye; determine from the at least two different Purkinje images a value for at least one parameter of the subject's eye; use the value of the at least one parameter to determine a customized chromatic adjustment factor for the subject's eye; and correct the measured refraction of the subject's eye at the infrared wavelength with the customized chromatic adjustment factor to determine a refraction of the subject's eye at a visible wavelength in the visible spectrum.Type: ApplicationFiled: January 16, 2019Publication date: May 16, 2019Inventors: Richard J. Copland, Daniel R. Neal, Thomas D. Raymond, Stephen W. Farrer
-
Publication number: 20190029512Abstract: An optical coherence tomography (OCT) system includes: a light source; a multi-focal delay line; and a light detector. The multi-focal delay line includes: a positive lens; and an optical switch configured to: receive a light from the light source; selectively direct the sample light to the positive lens via a selected one of a plurality of light interfaces each located a different distance from the focal plane of the positive lens; and direct the sample light to an object to be measured. The light detector is configured to receive return light returned from the object to be measured in response to the sample light, and to receive a reference light produced from the light from the light source, and in response thereto to detect at least one interference signal. An associated OCT method may be performed with the OCT system.Type: ApplicationFiled: October 1, 2018Publication date: January 31, 2019Inventors: Paul Pulaski, Daniel R. Neal, Thomas D. Raymond, Stephen W. Farrer, Daniel R. Hamrick, Richard J. Copland
-
Patent number: 10188287Abstract: An optical measurement system method for measuring a characteristic of a subject's eye use a probe beam having an infrared wavelength in the infrared spectrum to measure a refraction of the subject's eye at the infrared wavelength; capture at least two different Purkinje images at two different corresponding wavelengths from at least one surface of the lens of the subject's eye; determine from the at least two different Purkinje images a value for at least one parameter of the subject's eye; use the value of the at least one parameter to determine a customized chromatic adjustment factor for the subject's eye; and correct the measured refraction of the subject's eye at the infrared wavelength with the customized chromatic adjustment factor to determine a refraction of the subject's eye at a visible wavelength in the visible spectrum.Type: GrantFiled: September 30, 2016Date of Patent: January 29, 2019Assignee: AMO WaveFront Sciences, LLCInventors: Richard J. Copland, Daniel R. Neal, Thomas D. Raymond, Stephen W. Farrer
-
Patent number: 10149613Abstract: Embodiments of this invention generally relate to systems and methods for wavefront interactive refraction display and more particularly to systems and methods for capturing and displaying eye wavefront interactive refraction data based on the desired refractive state of the patient's eye.Type: GrantFiled: July 19, 2017Date of Patent: December 11, 2018Assignee: AMO Wavefront Sciences, LLCInventors: Daniel R. Neal, Stephen W. Farrer, Larry B. Voss, Thomas D. Raymond, Daniel R. Hamrick, John G. Dixson, Phillip Riera, Ron R. Rammage, Richard J. Copland
-
Patent number: 10085634Abstract: An optical coherence tomography (OCT) system includes: a light source; a multi-focal delay line; and a light detector. The multi-focal delay line includes: a positive lens; and an optical switch configured to: receive a light from the light source; selectively direct the sample light to the positive lens via a selected one of a plurality of light interfaces each located a different distance from the focal plane of the positive lens; and direct the sample light to an object to be measured. The light detector is configured to receive return light returned from the object to be measured in response to the sample light, and to receive a reference light produced from the light from the light source, and in response thereto to detect at least one interference signal. An associated OCT method may be performed with the OCT system.Type: GrantFiled: December 14, 2015Date of Patent: October 2, 2018Assignee: AMO WaveFront Sciences, LLCInventors: Paul Pulaski, Daniel R. Neal, Thomas D. Raymond, Stephen W. Farrer, Daniel R. Hamrick, Richard J. Copland
-
Publication number: 20180249905Abstract: A conical topographer includes: a flat panel display configured to display a light pattern and to project the light pattern onto a cornea of an eye disposed on a first side of the flat panel display; an optical system disposed on a second side of the flat panel display, the optical system being configured to receive and process reflected light from the cornea that passes through the flat panel display from the cornea to the optical system; a camera configured to receive the processed reflected light from the optical system and to capture therefrom a reflected light pattern from the cornea produced in response to the projected light pattern; and one or more processors configured to execute an algorithm to compare the projected light pattern to the reflected light pattern from the cornea, and to produce a topographic map of the cornea based on a result of the comparison.Type: ApplicationFiled: May 4, 2018Publication date: September 6, 2018Inventors: Stephen W. Farrer, W. Shea Powers, Daniel R. Neal, Larry B. Voss
-
Patent number: 9962077Abstract: A corneal topographer includes: a flat panel display configured to display a light pattern and to project the light pattern onto a cornea of an eye disposed on a first side of the flat panel display; an optical system disposed on a second side of the flat panel display, the optical system being configured to receive and process reflected light from the cornea that passes through the flat panel display from the cornea to the optical system; a camera configured to receive the processed reflected light from the optical system and to capture therefrom a reflected light pattern from the cornea produced in response to the projected light pattern; and one or more processors configured to execute an algorithm to compare the projected light pattern to the reflected light pattern from the cornea, and to produce a topographic map of the cornea based on a result of the comparison.Type: GrantFiled: March 31, 2017Date of Patent: May 8, 2018Assignee: AMO Wavefront Sciences, LLCInventors: Stephen W. Farrer, W. Shea Powers, Daniel R. Neal, Larry B. Voss
-
Publication number: 20170311798Abstract: Embodiments of this invention generally relate to systems and methods for wavefront interactive refraction display and more particularly to systems and methods for capturing and displaying eye wavefront interactive refraction data based on the desired refractive state of the patient's eye.Type: ApplicationFiled: July 19, 2017Publication date: November 2, 2017Inventors: Daniel R. Neal, Stephen W. Farrer, Larry B. Voss, Thomas D. Raymond, Daniel R. Hamrick, John G. Dixson, Phillip Riera, Ron R. Rammage, Richard J. Copland