Patents by Inventor Stephen W. Russell

Stephen W. Russell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11948984
    Abstract: Some embodiments include an integrated assembly having a pair of substantially parallel features spaced from one another by an intervening space. A conductive pipe is between the features and substantially parallel to the features. The conductive pipe may be formed within a tube. The tube may be generated by depositing insulative material between the features in a manner which pinches off a top region of the insulative material to leave the tube as a void region under the pinched-off top region.
    Type: Grant
    Filed: January 23, 2023
    Date of Patent: April 2, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Ahmed Nayaz Noemaun, Stephen W. Russell, Tao D. Nguyen, Santanu Sarkar
  • Patent number: 11903223
    Abstract: Methods and apparatuses for thin film transistors and related fabrication techniques are described. The thin film transistors may access two or more decks of memory cells disposed in a cross-point architecture. The fabrication techniques may use one or more patterns of vias formed at a top layer of a composite stack, which may facilitate building the thin film transistors within the composite stack while using a reduced number of processing steps. Different configurations of the thin film transistors may be built using the fabrication techniques by utilizing different groups of the vias. Further, circuits and components of a memory device (e.g., decoder circuitry, interconnects between aspects of one or more memory arrays) may be constructed using the thin film transistors as described herein along with related via-based fabrication techniques.
    Type: Grant
    Filed: May 27, 2021
    Date of Patent: February 13, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Hernan A. Castro, Stephen W. Russell, Stephen H. Tang
  • Publication number: 20240029772
    Abstract: Methods, systems, and devices for word line structures for three-dimensional memory arrays are described. A memory device may include word line structures that support accessing memory cells arranged in a three-dimensional level architecture. The word line structures may be arranged above a substrate and be separated from each other by respective dielectric layers. Each word line structure may include word line members and a word line plate that is connected to each word line member. Each word line plate may include a contact that may be coupled with a word line decoder operable to bias the word line plate. To couple the word line plate to the word line decoder, the memory device may include first vias that extend through holes in the word line plates and are coupled with second vias that extend from a respective contact through openings in the word line plates above the contact.
    Type: Application
    Filed: October 5, 2023
    Publication date: January 25, 2024
    Inventors: Stephen W. Russell, Lorenzo Fratin, Enrico Varesi, Paolo Fantini
  • Patent number: 11862280
    Abstract: Methods and apparatuses for thin film transistors and related fabrication techniques are described. The thin film transistors may access two or more decks of memory cells disposed in a cross-point architecture. The fabrication techniques may use one or more patterns of vias formed at a top layer of a composite stack, which may facilitate building the thin film transistors within the composite stack while using a reduced number of processing steps. Different configurations of the thin film transistors may be built using the fabrication techniques by utilizing different groups of the vias. Further, circuits and components of a memory device (e.g., decoder circuitry, interconnects between aspects of one or more memory arrays) may be constructed using the thin film transistors as described herein along with related via-based fabrication techniques.
    Type: Grant
    Filed: October 21, 2022
    Date of Patent: January 2, 2024
    Assignee: Micron Technology, Inc.
    Inventors: Hernan A. Castro, Stephen W. Russell, Stephen H. Tang
  • Patent number: 11848048
    Abstract: Methods, systems, and devices for memory device decoder configurations are described. A memory device may include an array of memory cells and decoder circuits. The array may include one or more memory cells coupled with an access line, and a decoder circuit may be configured to bias the access line to one or more voltages. The decoder circuit may include a first transistor coupled with the access line and a second transistor coupled with the access line. The first transistor may be a planar transistor having a first gate electrode formed on a substrate, and the second transistor may be a trench transistor having a second gate electrode that extends into a cavity of the substrate, where a length of a first gate electrode may be greater than a length of the second gate electrode.
    Type: Grant
    Filed: November 30, 2021
    Date of Patent: December 19, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Ahmed Nayaz Noemaun, Chandra S. Danana, Durga P. Panda, Luca Laurin, Michael J. Irwin, Rekha Chithra Thomas, Sara Vigano, Stephen W. Russell, Zia A. Shafi
  • Publication number: 20230354721
    Abstract: Methods, systems, and devices for memory cell formation in three dimensional memory arrays using atomic layer deposition (ALD) are described. The method may include depositing a stack of layers over a substrate and forming multiple piers through the stacks of layers. The method may further include forming multiple cavities through the stacks of layers and forming multiple voids between layers of the stacks of layers. Additionally, the method may include forming multiple word lines based on depositing a conductive material in the voids and forming multiple memory cells based on depositing an active material on an inside surface of the cavities using ALD.
    Type: Application
    Filed: April 27, 2022
    Publication date: November 2, 2023
    Inventors: Paolo Fantini, Stephen W. Russell, Enrico Varesi, Lorenzo Fratin
  • Patent number: 11804252
    Abstract: Methods, systems, and devices for word line structures for three-dimensional memory arrays are described. A memory device may include word line structures that support accessing memory cells arranged in a three-dimensional level architecture. The word line structures may be arranged above a substrate and be separated from each other by respective dielectric layers. Each word line structure may include word line members and a word line plate that is connected to each word line member. Each word line plate may include a contact that may be coupled with a word line decoder operable to bias the word line plate. To couple the word line plate to the word line decoder, the memory device may include first vias that extend through holes in the word line plates and are coupled with second vias that extend from a respective contact through openings in the word line plates above the contact.
    Type: Grant
    Filed: March 24, 2022
    Date of Patent: October 31, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Stephen W. Russell, Lorenzo Fratin, Enrico Varesi, Paolo Fantini
  • Publication number: 20230329010
    Abstract: Methods, systems, and devices for trench and pier architectures for three-dimensional memory arrays are described. A semiconductor device (e.g., a memory die) may include pier structures formed in contact with features formed from alternating layers of materials deposited over a substrate, which may provide support for subsequent processing. For example, a memory die may include alternating layers of a first material and a second material, which may be formed into various cross-sectional patterns. Pier structures may be formed in contact with the cross sectional patterns such that, when either the first material or the second material is removed to form voids, the pier structures may provide mechanical support of the cross-sectional pattern of the remaining material. In some examples, such pier structures may be formed within or along trenches or other features aligned along a direction of a memory array, which may provide a degree of self-alignment for subsequent operations.
    Type: Application
    Filed: April 6, 2022
    Publication date: October 12, 2023
    Inventors: Fabio Pellizzer, Russell L. Meyer, Stephen W. Russell, Lorenzo Fratin
  • Publication number: 20230309326
    Abstract: Methods, systems, and devices for dense piers for three-dimensional memory arrays are described. In some examples, a memory device may include pier structures formed in contact with features formed from alternating layers of materials deposited over a substrate. For example, a memory device may include alternating layers of a first material and a second material. In some examples, the alternating layers may be formed into a pair of interleaved comb structures. Pier structures may be formed in contact with the cross sectional patterns, and may provide mechanical support of cross-sectional pattern of the remaining material. In some examples, the piers may further act as a separator between memory cells or other features of the memory device. For example, the piers may extend into at least a portion of the interleaved comb structures, and may accordingly act as barriers during subsequent depositions of materials.
    Type: Application
    Filed: March 24, 2022
    Publication date: September 28, 2023
    Inventors: Stephen W. Russell, Enrico Varesi, David H. Wells, Paolo Fantini, Lorenzo Fratin
  • Publication number: 20230307025
    Abstract: Methods, systems, and devices for word line structures for three-dimensional memory arrays are described. A memory device may include word line structures that support accessing memory cells arranged in a three-dimensional level architecture. The word line structures may be arranged above a substrate and be separated from each other by respective dielectric layers. Each word line structure may include word line members and a word line plate that is connected to each word line member. Each word line plate may include a contact that may be coupled with a word line decoder operable to bias the word line plate. To couple the word line plate to the word line decoder, the memory device may include first vias that extend through holes in the word line plates and are coupled with second vias that extend from a respective contact through openings in the word line plates above the contact.
    Type: Application
    Filed: March 24, 2022
    Publication date: September 28, 2023
    Inventors: Stephen W. Russell, Lorenzo Fratin, Enrico Varesi, Paolo Fantini
  • Publication number: 20230309426
    Abstract: Methods, systems, and devices for sparse piers for three-dimensional memory arrays are described. A semiconductor device, such as a memory die, may include pier structures formed in contact with features formed from alternating layers of materials deposited over a substrate, which may provide mechanical support for subsequent processing. For example, a memory die may include alternating layers of a first material and a second material, which may be formed into various cross-sectional patterns. In some examples, the alternating layers may be formed into one or more pairs of interleaved comb structures. Pier structures may be formed in contact with the cross sectional patterns to provide mechanical support between instances of the cross-sectional patterns, or between layers of the cross-sectional patterns (e.g., when one or more layers are removed from the cross-sectional patterns), or both.
    Type: Application
    Filed: March 24, 2022
    Publication date: September 28, 2023
    Inventors: Stephen W. Russell, Enrico Varesi, David H. Wells, Paolo Fantini, Lorenzo Fratin
  • Publication number: 20230298951
    Abstract: Test structures for wafers are disclosed. A device may include a silicon wafer including a number of die and a scribe area between two die of the number of die. The scribe area may include one or more test structures. The test structures may include a p-doped region and an n-doped region adjacent to the p-doped region. The test structures may also include a first contact electrically coupled to the p-doped region and a second contact electrically coupled to the n-doped region. The second contact may be proximate to the first contact. Associated devices, systems, and methods are also disclosed.
    Type: Application
    Filed: March 16, 2022
    Publication date: September 21, 2023
    Inventors: Chase M. Hunter, Marlon W. Hug, Stephen W. Russell, Rajesh Kamana, Amitava Majumdar, Radhakrishna Kotti, Ahmed N. Noemaun, Tejaswi K. Indukuri
  • Patent number: 11764146
    Abstract: Methods for forming microelectronic device structures include forming interconnects that are self-aligned with both a lower conductive structure and an upper conductive structure. At least one lateral dimension of an interconnect is defined upon subtractively patterning the lower conductive structure along with a first sacrificial material. At least one other lateral dimension of the interconnect is defined by patterning a second sacrificial material or by an opening formed in a dielectric material through which the interconnect will extend. A portion of the first sacrificial material, exposed within the opening through the dielectric material, along with the second sacrificial material are removed and replaced with conductive material(s) to integrally form the interconnect and the upper conductive structure.
    Type: Grant
    Filed: July 19, 2021
    Date of Patent: September 19, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Stephen W. Russell, Fabio Pellizzer, Lorenzo Fratin
  • Patent number: 11706934
    Abstract: Methods and apparatuses for a cross-point memory array and related fabrication techniques are described. The fabrication techniques described herein may facilitate concurrently building two or more decks of memory cells disposed in a cross-point architecture. Each deck of memory cells may include a plurality of first access lines (e.g., word lines), a plurality of second access lines (e.g., bit lines), and a memory component at each topological intersection of a first access line and a second access line. The fabrication technique may use a pattern of vias formed at a top layer of a composite stack, which may facilitate building a 3D memory array within the composite stack while using a reduced number of processing steps. The fabrication techniques may also be suitable for forming a socket region where the 3D memory array may be coupled with other components of a memory device.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: July 18, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Hernan A. Castro, Stephen H. Tang, Stephen W. Russell
  • Publication number: 20230170015
    Abstract: Methods, systems, and devices for memory device decoder configurations are described. A memory device may include an array of memory cells and decoder circuits. The array may include one or more memory cells coupled with an access line, and a decoder circuit may be configured to bias the access line to one or more voltages. The decoder circuit may include a first transistor coupled with the access line and a second transistor coupled with the access line. The first transistor may be a planar transistor having a first gate electrode formed on a substrate, and the second transistor may be a trench transistor having a second gate electrode that extends into a cavity of the substrate, where a length of a first gate electrode may be greater than a length of the second gate electrode.
    Type: Application
    Filed: November 30, 2021
    Publication date: June 1, 2023
    Inventors: Ahmed Nayaz Noemaun, Chandra S. Danana, Durga P. Panda, Luca Laurin, Michael J. Irwin, Rekha Chithra Thomas, Sara Vigano, Stephen W. Russell, Zia A. Shafi
  • Publication number: 20230154989
    Abstract: Some embodiments include an integrated assembly having a pair of substantially parallel features spaced from one another by an intervening space. A conductive pipe is between the features and substantially parallel to the features. The conductive pipe may be formed within a tube. The tube may be generated by depositing insulative material between the features in a manner which pinches off a top region of the insulative material to leave the tube as a void region under the pinched-off top region.
    Type: Application
    Filed: January 23, 2023
    Publication date: May 18, 2023
    Applicant: Micron Technology, Inc.
    Inventors: Ahmed Nayaz Noemaun, Stephen W. Russell, Tao D. Nguyen, Santanu Sarkar
  • Patent number: 11653505
    Abstract: Methods and apparatuses for a cross-point memory array and related fabrication techniques are described. The fabrication techniques described herein may facilitate concurrently building two or more decks of memory cells disposed in a cross-point architecture. Each deck of memory cells may include a plurality of first access lines (e.g., word lines), a plurality of second access lines (e.g., bit lines), and a memory component at each topological intersection of a first access line and a second access line. The fabrication technique may use a pattern of vias formed at a top layer of a composite stack, which may facilitate building a 3D memory array within the composite stack while using a reduced number of processing steps. The fabrication techniques may also be suitable for forming a socket region where the 3D memory array may be coupled with other components of a memory device.
    Type: Grant
    Filed: February 11, 2021
    Date of Patent: May 16, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Hernan A. Castro, Stephen H. Tang, Stephen W. Russell
  • Publication number: 20230105355
    Abstract: Methods and apparatuses for thin film transistors and related fabrication techniques are described. The thin film transistors may access two or more decks of memory cells disposed in a cross-point architecture. The fabrication techniques may use one or more patterns of vias formed at a top layer of a composite stack, which may facilitate building the thin film transistors within the composite stack while using a reduced number of processing steps. Different configurations of the thin film transistors may be built using the fabrication techniques by utilizing different groups of the vias. Further, circuits and components of a memory device (e.g., decoder circuitry, interconnects between aspects of one or more memory arrays) may be constructed using the thin film transistors as described herein along with related via-based fabrication techniques.
    Type: Application
    Filed: October 21, 2022
    Publication date: April 6, 2023
    Inventors: Hernan A. Castro, Stephen W. Russell, Stephen H. Tang
  • Patent number: 11600707
    Abstract: Some embodiments include an integrated assembly having a pair of substantially parallel features spaced from one another by an intervening space. A conductive pipe is between the features and substantially parallel to the features. The conductive pipe may be formed within a tube. The tube may be generated by depositing insulative material between the features in a manner which pinches off a top region of the insulative material to leave the tube as a void region under the pinched-off top region.
    Type: Grant
    Filed: May 12, 2020
    Date of Patent: March 7, 2023
    Assignee: Micron Technology, Inc.
    Inventors: Ahmed Nayaz Noemaun, Stephen W. Russell, Tao D. Nguyen, Santanu Sarkar
  • Publication number: 20230027799
    Abstract: Methods, systems, and devices for techniques for forming self-aligned memory structures are described. Aspects include etching a layered assembly of materials including a first conductive material and a first sacrificial material to form a first set of channels along a first direction that creates a first set of sections. An insulative material may be deposited within each of the first set of channels and a second sacrificial material may be deposited onto the first set of sections and the insulating material. A second set of channels may be etched into the layered assembly of materials along a second direction that creates a second set of sections, where the second set of channels extend through the first and second sacrificial materials. Insulating material may be deposited in the second set of channels and the sacrificial materials removed leaving a cavity. A memory material may be deposited in the cavity.
    Type: Application
    Filed: August 4, 2022
    Publication date: January 26, 2023
    Inventors: Stephen W. Russell, Andrea Redaelli, Innocenzo Tortorelli, Agostino Pirovano, Fabio Pellizzer, Lorenzo Fratin