Patents by Inventor Steve Conquergood

Steve Conquergood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20150322773
    Abstract: A monitoring tool is provided for monitoring wells for flow anomalies. The temperatures of flowing well fluid and ambient temperature are monitored and various methods applied to indicate if a well is flowing as expected, is flowing less than expected and, therefore, at risk of flow stoppage, not flowing or calculation of flow rate when the well is flowing less than expected. Approaches are described for determining trending indicators from actual flow temperatures compared to a normal flow relationship for establishing the presence of flow anomalies. Temperature sensors, onsite processors and communications upload data for display of well status flags on a mapping module enabling pro-active detection and preventative action by operators.
    Type: Application
    Filed: July 21, 2015
    Publication date: November 12, 2015
    Inventors: Len JOHNSON, Steve CONQUERGOOD
  • Patent number: 9121770
    Abstract: A monitoring tool is provided for monitoring wells for flow anomalies. The temperatures of flowing well fluid and ambient temperature are monitored and various methods applied to indicate if a well is normal flowing, at risk of flow stoppage or cessation of flow. Approaches are described for determining trending indicators from actual flow temperatures compared to a normal flow relationship for establishing the presence of flow anomalies. Temperature sensors, onsite processors and communications upload data for display of well status flags on a mapping module enabling pro-active detection and preventative action by operators.
    Type: Grant
    Filed: May 2, 2012
    Date of Patent: September 1, 2015
    Assignee: ADVANCED FLOW TECHNOLOGIES INC.
    Inventors: Len Johnson, Jonathan E. Airey, Steve Conquergood
  • Patent number: 9027416
    Abstract: Make-up speed for a tongs drive system is monitored and controlled to maintain the speed within a limited target range either throughout the make-up process or during the final portion of the make-up process, thereby improving make-up consistency and allowing for improved evaluation or torque during the make-up process. An encoder generates speed and position data during the make-up process. The speed data is compared to a target speed, which is based on rod and/or tongs characteristics. If the speed does not match the target speed or is not within a range of the target speed, a signal is transmitted to the tongs drive to adjust the speed accordingly. Furthermore, position data from the encoder, or other position sensors, provide position data for the rod during the make-up process to limit or vary the speed control parameters during different portions of the make-up process.
    Type: Grant
    Filed: October 9, 2013
    Date of Patent: May 12, 2015
    Assignee: Key Energy Services, LLC
    Inventors: Steve Conquergood, David Lord
  • Publication number: 20140174731
    Abstract: Make-up speed for a tongs drive system is monitored and controlled to maintain the speed within a limited target range either throughout the make-up process or during the final portion of the make-up process, thereby improving make-up consistency and allowing for improved evaluation or torque during the make-up process. An encoder generates speed and position data during the make-up process. The speed data is compared to a target speed, which is based on rod and/or tongs characteristics. If the speed does not match the target speed or is not within a range of the target speed, a signal is transmitted to the tongs drive to adjust the speed accordingly. Furthermore, position data from the encoder, or other position sensors, provide position data for the rod during the make-up process to limit or vary the speed control parameters during different portions of the make-up process.
    Type: Application
    Filed: October 9, 2013
    Publication date: June 26, 2014
    Inventors: Steve Conquergood, David Lord
  • Patent number: 8590401
    Abstract: Make-up speed for a tongs drive system is monitored and controlled to maintain the speed within a limited target range either throughout the make-up process or during the final portion of the make-up process, thereby improving make-up consistency and allowing for improved evaluation or torque during the make-up process. An encoder generates speed and position data during the make-up process. The speed data is compared to a target speed, which is based on rod and/or tongs characteristics. If the speed does not match the target speed or is not within a range of the target speed, a signal is transmitted to the tongs drive to adjust the speed accordingly. Furthermore, position data from the encoder, or other position sensors, provide position data for the rod during the make-up process to limit or vary the speed control parameters during different portions of the make-up process.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: November 26, 2013
    Assignee: Key Energy Services, LLC
    Inventors: Steve Conquergood, David Lord
  • Publication number: 20130041588
    Abstract: A monitoring tool is provided for monitoring wells for flow anomalies. The temperatures of flowing well fluid and ambient temperature are monitored and various methods applied to indicate if a well is normal flowing, at risk of flow stoppage or cessation of flow. Approaches are described for determining trending indicators from actual flow temperatures compared to a normal flow relationship for establishing the presence of flow anomalies. Temperature sensors, onsite processors and communications upload data for display of well status flags on a mapping module enabling pro-active detection and preventative action by operators.
    Type: Application
    Filed: May 2, 2012
    Publication date: February 14, 2013
    Applicant: ADVANCED FLOW TECHNOLOGIES INC.
    Inventors: Len JOHNSON, Jonathan E. AIREY, Steve Conquergood
  • Publication number: 20120330552
    Abstract: Efficiency of a hydraulically driven system is evaluated by monitoring the change in ratio of output torque to input hydraulic pressure. The hydraulic pressure data is received from a hydraulic sensor. The torque data is received from a load cell receiving a force transmitted to it by a back-up wrench. Filters are applied to the data to obtain peak levels of torque and hydraulic pressure. A ratio is generated for each process associated with a rod or other elongated member based on peak torque and hydraulic pressure levels achieved during the process. The ratio is stored and compared to historical ratios to determine if the ratio has changed more than a predetermined amount over time. A similar evaluation can be achieved by comparing speed generated on the elongated member by the hydraulically driven system to the current level controlling the floss of hydraulic fluid to the hydraulically driven system.
    Type: Application
    Filed: August 30, 2012
    Publication date: December 27, 2012
    Inventors: Steve Conquergood, David Lord
  • Patent number: 8280639
    Abstract: Efficiency of a hydraulically driven system is evaluated by monitoring the change in ratio of output torque to input hydraulic pressure. The hydraulic pressure data is received from a hydraulic sensor. The torque data is received from a load cell receiving a force transmitted to it by a back-up wrench. Filters are applied to the data to obtain peak levels of torque and hydraulic pressure. A ratio is generated for each process associated with a rod or other elongated member based on peak torque and hydraulic pressure levels achieved during the process. The ratio is stored and compared to historical ratios to determine if the ratio has changed more than a predetermined amount over time. A similar evaluation can be achieved by comparing speed generated on the elongated member by the hydraulically driven system to the current level controlling the flow of hydraulic fluid to the hydraulically driven system.
    Type: Grant
    Filed: November 30, 2009
    Date of Patent: October 2, 2012
    Assignee: Key Energy Services, LLC
    Inventors: Steve Conquergood, David Lord
  • Publication number: 20100138159
    Abstract: Efficiency of a hydraulically driven system is evaluated by monitoring the change in ratio of output torque to input hydraulic pressure. The hydraulic pressure data is received from a hydraulic sensor. The torque data is received from a load cell receiving a force transmitted to it by a back-up wrench. Filters are applied to the data to obtain peak levels of torque and hydraulic pressure. A ratio is generated for each process associated with a rod or other elongated member based on peak torque and hydraulic pressure levels achieved during the process. The ratio is stored and compared to historical ratios to determine if the ratio has changed more than a predetermined amount over time. A similar evaluation can be achieved by comparing speed generated on the elongated member by the hydraulically driven system to the current level controlling the flow of hydraulic fluid to the hydraulically driven system.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 3, 2010
    Applicant: Key Energy Services, Inc.
    Inventors: Steve Conquergood, David Lord
  • Publication number: 20100132180
    Abstract: Make-up speed for a tongs drive system is monitored and controlled to maintain the speed within a limited target range either throughout the make-up process or during the final portion of the make-up process, thereby improving make-up consistency and allowing for improved evaluation or torque during the make-up process. An encoder generates speed and position data during the make-up process. The speed data is compared to a target speed, which is based on rod and/or tongs characteristics. If the speed does not match the target speed or is not within a range of the target speed, a signal is transmitted to the tongs drive to adjust the speed accordingly. Furthermore, position data from the encoder, or other position sensors, provide position data for the rod during the make-up process to limit or vary the speed control parameters during different portions of the make-up process.
    Type: Application
    Filed: November 30, 2009
    Publication date: June 3, 2010
    Applicant: Key Energy Services, Inc.
    Inventors: Steve Conquergood, David Lord
  • Patent number: 7562584
    Abstract: An apparatus, system and methodology enable non-intrusive measurement of parameters related to fluid flow in a conduit. An acoustic sensor is located along the conduit and includes a mechanical amplifier having an acoustic input coupled to the conduit and a microphone coupled to the mechanical amplifier. The microphone receives mechanically amplified acoustic energy from the conduit and establishing first signals which are processed for generating second signals which are related to fluid flow in the conduit. The second signals can include quantitative flow data and qualitative data such as change in state and alarms. The second signals can be transmitted wirelessly to a remote site for further processing. Use of low power components and power management enable long term operations on battery power.
    Type: Grant
    Filed: April 7, 2006
    Date of Patent: July 21, 2009
    Assignee: Advanced Flow Technologies Inc.
    Inventor: Steve Conquergood
  • Publication number: 20060225514
    Abstract: An apparatus, system and methodology enable non-intrusive measurement of parameters related to fluid flow in a conduit. An acoustic sensor is located along the conduit and includes a mechanical amplifier having an acoustic input coupled to the conduit and a microphone coupled to the mechanical amplifier. The microphone receives mechanically amplified acoustic energy from the conduit and establishing first signals which are processed for generating second signals which are related to fluid flow in the conduit. The second signals can include quantitative flow data and qualitative data such as change in state and alarms. The second signals can be transmitted wirelessly to a remote site for further processing. Use of low power components and power management enable long term operations on battery power.
    Type: Application
    Filed: April 7, 2006
    Publication date: October 12, 2006
    Applicant: ADVANCED FLOW TECHNOLOGIES INC.
    Inventor: Steve Conquergood