Patents by Inventor Steve Esser

Steve Esser has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11823054
    Abstract: Learned step size quantization in artificial neural network is provided. In various embodiments, a system comprises an artificial neural network and a computing node. The artificial neural network comprises: a quantizer having a configurable step size, the quantizer adapted to receive a plurality of input values and quantize the plurality of input values according to the configurable step size to produce a plurality of quantized input values, at least one matrix multiplier configured to receive the plurality of quantized input values from the quantizer and to apply a plurality of weights to the quantized input values to determine a plurality of output values having a first precision, and a multiplier configured to scale the output values to a second precision.
    Type: Grant
    Filed: February 20, 2020
    Date of Patent: November 21, 2023
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Steve Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, Dharmendra S. Modha
  • Patent number: 11537859
    Abstract: Neural inference chips are provided. A neural core of the neural inference chip comprises a vector-matrix multiplier; a vector processor; and an activation unit operatively coupled to the vector processor. The vector-matrix multiplier, vector processor, and/or activation unit is adapted to operate at variable precision.
    Type: Grant
    Filed: December 6, 2019
    Date of Patent: December 27, 2022
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Andrew S. Cassidy, Rathinakumar Appuswamy, John V. Arthur, Pallab Datta, Steve Esser, Myron D. Flickner, Jeffrey McKinstry, Dharmendra S. Modha, Jun Sawada, Brian Taba
  • Publication number: 20210264279
    Abstract: Learned step size quantization in artificial neural network is provided. In various embodiments, a system comprises an artificial neural network and a computing node. The artificial neural network comprises: a quantizer having a configurable step size, the quantizer adapted to receive a plurality of input values and quantize the plurality of input values according to the configurable step size to produce a plurality of quantized input values, at least one matrix multiplier configured to receive the plurality of quantized input values from the quantizer and to apply a plurality of weights to the quantized input values to determine a plurality of output values having a first precision, and a multiplier configured to scale the output values to a second precision.
    Type: Application
    Filed: February 20, 2020
    Publication date: August 26, 2021
    Inventors: Steve Esser, Jeffrey L. McKinstry, Deepika Bablani, Rathinakumar Appuswamy, Dharmendra S. Modha
  • Publication number: 20210209450
    Abstract: A neural inference chip includes a global weight memory; a neural core; and a network connecting the global weight memory to the at least one neural core. The neural core comprises a local weight memory. The local weight memory comprises a plurality of memory banks. Each of the plurality of memory banks is uniquely addressable by at least one index. The neural inference chip is adapted to store in the global weight memory a compressed weight block comprising at least one compressed weight matrix. The neural inference chip is adapted to transmit the compressed weight block from the global weight memory to the core via the network. The core is adapted to decode the at least one compressed weight matrix into a decoded weight matrix and store the decoded weight matrix in its local weight memory. The at core is adapted to apply the decoded weight matrix to a plurality of input activations to produce a plurality of output activations.
    Type: Application
    Filed: January 3, 2020
    Publication date: July 8, 2021
    Inventors: Andrew S. Cassidy, Rathinakumar Appuswamy, John V. Arthur, Pallab Datta, Steve Esser, Myron D. Flickner, Dharmendra S. Modha, Jun Sawada
  • Publication number: 20210174176
    Abstract: Neural inference chips are provided. A neural core of the neural inference chip comprises a vector-matrix multiplier; a vector processor; and an activation unit operatively coupled to the vector processor. The vector-matrix multiplier, vector processor, and/or activation unit is adapted to operate at variable precision.
    Type: Application
    Filed: December 6, 2019
    Publication date: June 10, 2021
    Inventors: Andrew S. Cassidy, Rathinakumar Appuswamy, John V. Arthur, Pallab Datta, Steve Esser, Myron D. Flickner, Jeffrey McKinstry, Dharmendra S. Modha, Jun Sawada, Brian Taba