Patents by Inventor Steve Fang

Steve Fang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10987018
    Abstract: A method and system for determining a body impedance (Zbody) of a user are disclosed. The method comprises coupling a sensor device to the user, wherein the sensor device includes at least a first and a second electrode. The method includes applying a voltage signal (Vin) through a first impedance (Zin1) to the first electrode and through a second impedance (Zin2) to the second electrode to produce an output signal. The method includes measuring a differential voltage (Vbody) across the first and second electrodes and calculating the body impedance (Zbody) using the measured differential voltage (Vbody), the voltage signal (Vin), the first impedance (Zin1), and the second impedance (Zin2).
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: April 27, 2021
    Assignee: VITAL CONNECT, INC.
    Inventors: Arshan Aga, Steve Fang
  • Patent number: 10714205
    Abstract: Detecting a word line leakage in a non-volatile memory array. Various methods include: in a first step, enabling a M-bit “coarse” digital-to-analog converter (DAC) logic of an N-bit analog-to-digital converter (ADC) to, according to a clock signal of the coarse DAC, compare a reference voltage and a biased input voltage of a load current of the memory array, wherein the reference voltage is dependent upon the voltage level at which the input voltage becomes non-linear, and, in a second step, if the input voltage is greater than or equal to the reference voltage, enabling a P-bit “fine” ramp digital-to-analog converter (DAC) logic of the ADC to enable drawing a second current from the load current to ramp down the input voltage and to begin a counter and conduct leakage detection with the ADC when the input voltage is in the range between a first voltage and a second voltage.
    Type: Grant
    Filed: June 25, 2019
    Date of Patent: July 14, 2020
    Assignee: SanDisk Technologies LLC
    Inventors: Steve Fang, Xiaofeng Zhang
  • Patent number: 10582854
    Abstract: A method and system for determining thermistor resistance have been disclosed. The method comprises providing a temperature sensor network within a wireless sensor device, wherein the temperature sensor network includes a driver device and a receiver device, coupling the driver device to the receiver device using a dual bond wire system, determining at least one output voltage using at least one input current flowing through the dual bond wire system, and determining the thermistor resistance using the at least one output voltage. The system comprises a wireless sensor device including a temperature sensor network that comprises driver and receiver devices, and a dual bond wire system that couples the driver device to the receiver device, wherein at least one output voltage is determined using at least one input current flowing through the dual bond wire system, further wherein the thermistor resistance is determined using the at least one output voltage.
    Type: Grant
    Filed: August 5, 2016
    Date of Patent: March 10, 2020
    Assignee: Vital Connect, Inc.
    Inventors: Raymond Liou, Arshan Aga, Steve Fang
  • Publication number: 20190059777
    Abstract: A method and system for determining a body impedance (Zbody) of a user are disclosed. The method comprises coupling a sensor device to the user, wherein the sensor device includes at least a first and a second electrode. The method includes applying a voltage signal (Vin) through a first impedance (Zin1) to the first electrode and through a second impedance (Zin2) to the second electrode to produce an output signal. The method includes measuring a differential voltage (Vbody) across the first and second electrodes and calculating the body impedance (Zbody) using the measured differential voltage (Vbody), the voltage signal (Vin), the first impedance (Zin1), and the second impedance (Zin2).
    Type: Application
    Filed: August 28, 2017
    Publication date: February 28, 2019
    Inventors: Arshan Aga, Steve Fang
  • Publication number: 20180035889
    Abstract: A method and system for determining thermistor resistance have been disclosed. The method comprises providing a temperature sensor network within a wireless sensor device, wherein the temperature sensor network includes a driver device and a receiver device, coupling the driver device to the receiver device using a dual bond wire system, determining at least one output voltage using at least one input current flowing through the dual bond wire system, and determining the thermistor resistance using the at least one output voltage. The system comprises a wireless sensor device including a temperature sensor network that comprises driver and receiver devices, and a dual bond wire system that couples the driver device to the receiver device, wherein at least one output voltage is determined using at least one input current flowing through the dual bond wire system, further wherein the thermistor resistance is determined using the at least one output voltage.
    Type: Application
    Filed: August 5, 2016
    Publication date: February 8, 2018
    Inventors: Raymond LIOU, Arshan AGA, Steve FANG
  • Patent number: 9130518
    Abstract: A circuit including an amplifier, a transistor, and first, second and third resistances. The amplifier includes an input and an output. The amplifier receives an input signal. A cycle of the input signal includes first and second pulses. The input signal is asymmetrical such that the first pulse has a different peak magnitude than the second pulse. The transistor is connected to the input and the output. The first, second, and third resistances are each connected to the input of the amplifier. The second resistance receives a first input voltage. The third resistance receives a second input voltage. The input signal is based on the first resistance and the first and second input voltages. The amplifier corrects some asymmetry of the input signal to provide an output signal. An amount of asymmetry of the output signal is based on (i) the input signal, and (ii) a state of the transistor.
    Type: Grant
    Filed: April 15, 2014
    Date of Patent: September 8, 2015
    Assignee: Marvell World Trade Ltd.
    Inventors: Steve Fang, Qiang Tang, Myung Jae Yoo
  • Publication number: 20140225670
    Abstract: A circuit including an amplifier, a transistor, and first, second and third resistances. The amplifier includes an input and an output. The amplifier receives an input signal. A cycle of the input signal includes first and second pulses. The input signal is asymmetrical such that the first pulse has a different peak magnitude than the second pulse. The transistor is connected to the input and the output. The first, second, and third resistances are each connected to the input of the amplifier. The second resistance receives a first input voltage. The third resistance receives a second input voltage. The input signal is based on the first resistance and the first and second input voltages. The amplifier corrects some asymmetry of the input signal to provide an output signal. An amount of asymmetry of the output signal is based on (i) the input signal, and (ii) a state of the transistor.
    Type: Application
    Filed: April 15, 2014
    Publication date: August 14, 2014
    Applicant: Marvell World Trade LTD.
    Inventors: Steve Fang, Qiang Tang, Myung Jae Yoo
  • Patent number: 8698555
    Abstract: In one embodiment, an apparatus an amplifier configured to receive an asymmetric signal. A first resistance is coupled between an input node and an output node of the amplifier, the input node receiving the asymmetric signal. A second resistance is coupled to the input node of the amplifier. The second resistance includes a linear resistor. A third resistance is coupled to the second resistance. The third resistance is varied to adjust an amount of asymmetric correction provided by the amplifier to correct the asymmetric signal at the output node. The amount of asymmetric correction is a function of the first resistance and a combination of the second resistance and the third resistance.
    Type: Grant
    Filed: November 8, 2011
    Date of Patent: April 15, 2014
    Assignee: Marvell World Trade Ltd.
    Inventors: Steve Fang, Qiang Tang, Myung Jae Yoo
  • Publication number: 20120126889
    Abstract: In one embodiment, an apparatus an amplifier configured to receive an asymmetric signal. A first resistance is coupled between an input node and an output node of the amplifier, the input node receiving the asymmetric signal. A second resistance is coupled to the input node of the amplifier. The second resistance includes a linear resistor. A third resistance is coupled to the second resistance. The third resistance is varied to adjust an amount of asymmetric correction provided by the amplifier to correct the asymmetric signal at the output node. The amount of asymmetric correction is a function of the first resistance and a combination of the second resistance and the third resistance.
    Type: Application
    Filed: November 8, 2011
    Publication date: May 24, 2012
    Inventors: Steve Fang, Qiang Tang, Myung Jae Yoo
  • Patent number: 7825737
    Abstract: A frequency phase locked loop (FPLL) includes a first feedback loop coupled to a second feedback loop. The first feedback loop is configured to correct a phase offset of an output signal of the FPLL. The second feedback loop is configured to correct a frequency offset of the output signal of the FPLL.
    Type: Grant
    Filed: December 15, 2008
    Date of Patent: November 2, 2010
    Assignee: Marvell International Ltd.
    Inventors: Steve Fang, Chi Fung Cheng