Patents by Inventor Steve Lampe
Steve Lampe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 9359947Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.Type: GrantFiled: March 9, 2012Date of Patent: June 7, 2016Assignee: ENER-CORE POWER, INC.Inventors: Steve Lampe, Douglas Hamrin
-
Patent number: 9347664Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.Type: GrantFiled: March 9, 2012Date of Patent: May 24, 2016Assignee: ENER-CORE POWER, INC.Inventors: Steve Lampe, Douglas Hamrin
-
Patent number: 9328916Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.Type: GrantFiled: March 9, 2012Date of Patent: May 3, 2016Assignee: ENER-CORE POWER, INC.Inventors: Steve Lampe, Douglas Hamrin
-
Patent number: 9279364Abstract: A system for the gradual oxidation of fuel is disclosed. The system includes an oxidizer that has a reaction chamber with an inlet and an outlet. The reaction chamber is configured to receive a fluid comprising an oxidizable fuel through the inlet. The oxidizer is configured to maintain a flameless oxidation process. The system also includes a heating chamber with an inlet and an outlet. The inlet of the heating chamber is in fluid communication with the outlet of the reaction chamber. The heating chamber is configured to receive the fluid from the reaction chamber and selectably heat the fluid.Type: GrantFiled: November 4, 2011Date of Patent: March 8, 2016Assignee: Ener-Core Power, Inc.Inventors: Douglas Hamrin, Steve Lampe
-
Patent number: 9273606Abstract: A system for the gradual oxidation of fuel is disclosed. The system includes an oxidizer that has a reaction chamber with an inlet and an outlet. The reaction chamber is configured to receive a fluid comprising an oxidizable fuel through the inlet. The oxidizer is configured to maintain a flameless oxidation process. The system also includes a heating chamber with an inlet and an outlet. The inlet of the heating chamber is in fluid communication with the outlet of the reaction chamber. The heating chamber is configured to receive the fluid from the reaction chamber and selectably heat the fluid.Type: GrantFiled: November 4, 2011Date of Patent: March 1, 2016Assignee: Ener-Core Power, Inc.Inventors: Douglas Hamrin, Steve Lampe
-
Publication number: 20130232943Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.Type: ApplicationFiled: March 9, 2012Publication date: September 12, 2013Applicant: FLEXENERGY, INC.Inventors: Steve LAMPE, Douglas HAMRIN
-
Publication number: 20130232984Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.Type: ApplicationFiled: March 9, 2012Publication date: September 12, 2013Applicant: FLEXENERGY, INC.Inventors: Steve Lampe, Douglas Hamrin
-
Publication number: 20130236839Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.Type: ApplicationFiled: March 9, 2012Publication date: September 12, 2013Applicant: FLEXENERGY, INC.Inventors: Steve Lampe, Douglas Hamrin
-
Publication number: 20130232944Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.Type: ApplicationFiled: March 9, 2012Publication date: September 12, 2013Applicant: FLEXENERGY, INC.Inventors: Steve LAMPE, Douglas Hamrin
-
Publication number: 20130236845Abstract: Described herein are embodiments of systems and methods for oxidizing gases. In some embodiments, a reaction chamber is configured to receive a fuel gas and maintain the gas at a temperature within the reaction chamber that is above an autoignition temperature of the gas. The reaction chamber may also be configured to maintain a reaction temperature within the reaction chamber below a flameout temperature. In some embodiments, heat and product gases from the oxidation process can be used, for example, to drive a turbine, reciprocating engine, and injected back into the reaction chamber.Type: ApplicationFiled: March 9, 2012Publication date: September 12, 2013Applicant: FLEXENERGY, INC.Inventors: Douglas HAMRIN, Steve LAMPE
-
Publication number: 20130111920Abstract: A system for the gradual oxidation of fuel is disclosed. The system includes an oxidizer that has a reaction chamber with an inlet and an outlet. The reaction chamber is configured to receive a fluid comprising an oxidizable fuel through the inlet. The oxidizer is configured to maintain a flameless oxidation process. The system also includes a heating chamber with an inlet and an outlet. The inlet of the heating chamber is in fluid communication with the outlet of the reaction chamber. The heating chamber is configured to receive the fluid from the reaction chamber and selectably heat the fluid.Type: ApplicationFiled: November 4, 2011Publication date: May 9, 2013Applicant: FlexEnergy, Inc.Inventors: Douglas Hamrin, Steve Lampe
-
Publication number: 20130111913Abstract: A system for the gradual oxidation of fuel is disclosed. The system includes an oxidizer that has a reaction chamber with an inlet and an outlet. The reaction chamber is configured to receive a fluid comprising an oxidizable fuel through the inlet. The oxidizer is configured to maintain a flameless oxidation process. The system also includes a heating chamber with an inlet and an outlet. The inlet of the heating chamber is in fluid communication with the outlet of the reaction chamber. The heating chamber is configured to receive the fluid from the reaction chamber and selectably heat the fluid.Type: ApplicationFiled: November 4, 2011Publication date: May 9, 2013Applicant: FlexEnergy, Inc.Inventors: Douglas Hamrin, Steve Lampe