Patents by Inventor Steve Marschner

Steve Marschner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9939377
    Abstract: A method for creating a replication material corresponding to the appearance of a translucent or partially translucent target material. The appearance of the target material can be measured or may be prescribed by a user. The method includes receiving by a processor optical data related to a target subsurface scattering parameter of the target material. Once the processor has received the optical or light characteristic data, the method includes determining by the processor a replication pigment concentration to replicate the appearance of the target material caused by the target subsurface scattering parameter. The processor determines this concentration based on a plurality of pigment subsurface scattering parameters corresponding to a plurality of stored pigment concentrations in the computing device. Once the replication pigment concentration has been determined, the method includes creating, physically or virtually, the replication material by combining the pigment concentration with a base material.
    Type: Grant
    Filed: July 5, 2013
    Date of Patent: April 10, 2018
    Assignee: DISNEY ENTERPRISES, INC.
    Inventors: Marios Papas, Christian Regg, Steve Marschner, Wojciech Jarosz, Wojciech Matusik, Philip J. Jackson, Bernd Bickel
  • Patent number: 9472016
    Abstract: The disclosure provides an approach for rendering granular media. According to one aspect of the disclosure, granular media are rendered using bidirectional point scattering distribution functions (BPSDFs). The dimensionality of BPSDFs may be reduced by making certain assumptions, such as random orientations of grains, thereby simplifying light transport for computational efficiency. To generate a BPSDF from a grain, light transport may be precomputed using a Monte Carlo simulation in which photons are shot onto the grain from all directions. The precomputed BPSDF may be used, during rendering, for describing the interactions within grains. When a light ray traced during rendering intersects proxy geometry which replaces grain geometry, the BPSDF may be evaluated to determine light transport. By repeating this process for many light rays in a Monte Carlo simulation, the light propagation through the granular medium may be determined.
    Type: Grant
    Filed: March 15, 2013
    Date of Patent: October 18, 2016
    Assignee: Disney Enterprises, Inc.
    Inventors: Wojciech Jarosz, Johannes Meng, Marios Papas, Ralf Habel, Carsten Dachsbacher, Steve Marschner
  • Patent number: 9317970
    Abstract: Techniques are provided to model hair and skin. Multiscopic images are received that depict at least part of a subject having hair. The multiscopic images are analyzed to determine hairs depicted. Two-dimensional hair segments are generated that represent the hairs. Three-dimensional hair segments are generated based on the two-dimensional hair segments. A three-dimensional model of skin is generated based on the three-dimensional hair segments.
    Type: Grant
    Filed: August 17, 2012
    Date of Patent: April 19, 2016
    Assignees: Disney Enterprises, Inc., ETH Zurich (Eidgenoessische Technische Hochschule Zurich)
    Inventors: Thabo D. Beeler, Paul Beardsley, Robert Sumner, Bernd Bickel, Steve Marschner
  • Publication number: 20160096318
    Abstract: A 3D printer system that allows a 3D object to be printed such that each portion or object element is constructed or designed to have a user-defined or user-selected material parameter such as varying elastic deformation. The 3D printer system stores a library of microstructures or cells that are each defined and designed to provide the desired material parameter and that can be combined during 3D printing to provide a portion or element of a printed 3D object having the material parameter. For example, a toy or figurine is printed using differing microstructures in its arms than its body to allow the arms to have a first elasticity (or softness) that differs from that of the body that is printed with microstructures providing a second elasticity. The use of microstructures allows the 3D printer system to operate to alter the effective deformation behavior of 3D objects printed using single-material.
    Type: Application
    Filed: October 3, 2014
    Publication date: April 7, 2016
    Applicant: DISNEY ENTERPRISES, INC.
    Inventors: BERND BICKEL, CHRISTIAN SCHUMACHER, STEVE MARSCHNER
  • Publication number: 20140267275
    Abstract: The disclosure provides an approach for rendering granular media. According to one aspect of the disclosure, granular media are rendered using bidirectional point scattering distribution functions (BPSDFs). The dimensionality of BPSDFs may be reduced by making certain assumptions, such as random orientations of grains, thereby simplifying light transport for computational efficiency. To generate a BPSDF from a grain, light transport may be precomputed using a Monte Carlo simulation in which photons are shot onto the grain from all directions. The precomputed BPSDF may be used, during rendering, for describing the interactions within grains. When a light ray traced during rendering intersects proxy geometry which replaces grain geometry, the BPSDF may be evaluated to determine light transport. By repeating this process for many light rays in a Monte Carlo simulation, the light propagation through the granular medium may be determined.
    Type: Application
    Filed: March 15, 2013
    Publication date: September 18, 2014
    Applicant: Disney Enterprises, Inc.
    Inventors: Wojciech JAROSZ, Johannes MENG, Marios PAPAS, Ralf HABEL, Carsten DACHSBACHER, Steve Marschner
  • Publication number: 20140198204
    Abstract: A method for creating a replication material corresponding to the appearance of a translucent or partially translucent target material. The appearance of the target material can be measured or may be prescribed by a user. The method includes receiving by a processor optical data related to a target subsurface scattering parameter of the target material. Once the processor has received the optical or light characteristic data, the method includes determining by the processor a replication pigment concentration to replicate the appearance of the target material caused by the target subsurface scattering parameter. The processor determines this concentration based on a plurality of pigment subsurface scattering parameters corresponding to a plurality of stored pigment concentrations in the computing device. Once the replication pigment concentration has been determined, the method includes creating, physically or virtually, the replication material by combining the pigment concentration with a base material.
    Type: Application
    Filed: July 5, 2013
    Publication date: July 17, 2014
    Inventors: Marios Papas, Christian Regg, Steve Marschner, Wojciech Jarosz, Wojciech Matusik, Philip J. Jackson, Bernd Bickel
  • Publication number: 20120313937
    Abstract: Techniques are provided to model hair and skin. Multiscopic images are received that depict at least part of a subject having hair. The multiscopic images are analyzed to determine hairs depicted. Two-dimensional hair segments are generated that represent the hairs. Three-dimensional hair segments are generated based on the two-dimensional hair segments. A three-dimensional model of skin is generated based on the three-dimensional hair segments.
    Type: Application
    Filed: August 17, 2012
    Publication date: December 13, 2012
    Applicant: DISNEY ENTERPRISES, INC.
    Inventors: Thabo D. Beeler, Paul Beardsley, Robert Sumner, Bernd Bickel, Steve Marschner