Patents by Inventor Steve Porter

Steve Porter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8026903
    Abstract: A multi-touch sensor panel can be created using a substrate with column and row traces formed on either side. Metal traces running along the border of the substrate can be used to bring the row traces to the same edge as the column traces. A single flex circuit can be fabricated to connect to the rows and columns on directly opposing sides. Flex printed circuits can be bonded to directly opposing attachment areas of a substrate by cooling one side of the substrate while bonding the other. In addition, “coverlay” material extending over right-angled traces on the flex circuit ensure that those traces do not get shorted should conductive bonding material get squeezed out during bonding. Furthermore, a spacer is placed at the distal end of the flex circuit to apply even bonding pressure over the entire flex circuit attachment area during bonding.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: September 27, 2011
    Assignee: Apple Inc.
    Inventors: Mark Arthur Hamblin, Steve Porter Hotelling
  • Patent number: 8026905
    Abstract: A multi-touch sensor panel can be created using a substrate with column and row traces formed on either side. Metal traces running along the border of the substrate can be used to bring the row traces to the same edge as the column traces. A single flex circuit can be fabricated to connect to the rows and columns on directly opposing sides. Flex printed circuits can be bonded to directly opposing attachment areas of a substrate by cooling one side of the substrate while bonding the other. In addition, “coverlay” material extending over right-angled traces on the flex circuit ensure that those traces do not get shorted should conductive bonding material get squeezed out during bonding. Furthermore, a spacer is placed at the distal end of the flex circuit to apply even bonding pressure over the entire flex circuit attachment area during bonding.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: September 27, 2011
    Assignee: Apple Inc.
    Inventors: Mark Arthur Hamblin, Steve Porter Hotelling
  • Patent number: 7999795
    Abstract: A multi-touch sensor panel can be created using a substrate with column and row traces formed on either side. Metal traces running along the border of the substrate can be used to bring the row traces to the same edge as the column traces. A single flex circuit can be fabricated to connect to the rows and columns on directly opposing sides. Flex printed circuits can be bonded to directly opposing attachment areas of a substrate by cooling one side of the substrate while bonding the other. In addition, “coverlay” material extending over right-angled traces on the flex circuit ensure that those traces do not get shorted should conductive bonding material get squeezed out during bonding. Furthermore, a spacer is placed at the distal end of the flex circuit to apply even bonding pressure over the entire flex circuit attachment area during bonding.
    Type: Grant
    Filed: January 5, 2011
    Date of Patent: August 16, 2011
    Assignee: Apple Inc.
    Inventors: Mark Arthur Hamblin, Steve Porter Hotelling
  • Publication number: 20110187677
    Abstract: Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside the not between the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane-switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
    Type: Application
    Filed: April 11, 2011
    Publication date: August 4, 2011
    Inventors: Steve Porter Hotelling, Wei Chen, Christoph Horst Krah, John Greer Elias, Wei Hsin Yao, John Z. Zhong, Andrew Bert Hodge, Brian Richards Land, Willem den Boer
  • Publication number: 20110181549
    Abstract: A multi-touch capacitive touch sensor panel can be created using a substrate with column and row traces formed on either side of the substrate. To shield the column (sense) traces from the effects of capacitive coupling from a modulated Vcom layer in an adjacent liquid crystal display (LCD) or any source of capacitive coupling, the row traces can be widened to shield the column traces, and the row traces can be placed closer to the LCD. In particular, the rows can be widened so that there is spacing of about 30 microns between adjacent row traces. In this manner, the row traces can serve the dual functions of driving the touch sensor panel, and also the function of shielding the more sensitive column (sense) traces from the effects of capacitive coupling.
    Type: Application
    Filed: April 1, 2011
    Publication date: July 28, 2011
    Inventors: Steve Porter HOTELLING, Brian Richards LAND
  • Publication number: 20110181550
    Abstract: A space-efficient substantially transparent mutual capacitance touch sensor panel can be created by forming columns made of a substantially transparent conductive material on one side of a first substantially transparent substrate, forming rows made of the substantially transparent conductive material on one side of a second substantially transparent substrate, adhering the two substrates together with a substantially transparent adhesive, bringing column connections down to the second substrate using vias, and routing both the column and row connections to a single connection area on the second substrate. In addition, in some embodiments some of the row connections can be routed to a second connection area on the second substrate to minimize the size of the sensor panel.
    Type: Application
    Filed: April 5, 2011
    Publication date: July 28, 2011
    Inventor: Steve Porter HOTELLING
  • Patent number: 7948477
    Abstract: A space-efficient substantially transparent mutual capacitance touch sensor panel can be created by forming columns made of a substantially transparent conductive material on one side of a first substantially transparent substrate, forming rows made of the substantially transparent conductive material on one side of a second substantially transparent substrate, adhering the two substrates together with a substantially transparent adhesive, bringing column connections down to the second substrate using vias, and routing both the column and row connections to a single connection area on the second substrate. In addition, in some embodiments some of the row connections can be routed to a second connection area on the second substrate to minimize the size of the sensor panel.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: May 24, 2011
    Assignee: Apple Inc.
    Inventor: Steve Porter Hotelling
  • Publication number: 20110094098
    Abstract: A multi-touch sensor panel can be created using a substrate with column and row traces formed on either side. Metal traces running along the border of the substrate can be used to bring the row traces to the same edge as the column traces. A single flex circuit can be fabricated to connect to the rows and columns on directly opposing sides. Flex printed circuits can be bonded to directly opposing attachment areas of a substrate by cooling one side of the substrate while bonding the other. In addition, “coverlay” material extending over right-angled traces on the flex circuit ensure that those traces do not get shorted should conductive bonding material get squeezed out during bonding. Furthermore, a spacer is placed at the distal end of the flex circuit to apply even bonding pressure over the entire flex circuit attachment area during bonding.
    Type: Application
    Filed: January 5, 2011
    Publication date: April 28, 2011
    Inventors: Mark Arthur HAMBLIN, Steve Porter Hotelling
  • Publication number: 20110094993
    Abstract: A multi-touch sensor panel can be created using a substrate with column and row traces formed on either side. Metal traces running along the border of the substrate can be used to bring the row traces to the same edge as the column traces. A single flex circuit can be fabricated to connect to the rows and columns on directly opposing sides. Flex printed circuits can be bonded to directly opposing attachment areas of a substrate by cooling one side of the substrate while bonding the other. In addition, “coverlay” material extending over right-angled traces on the flex circuit ensure that those traces do not get shorted should conductive bonding material get squeezed out during bonding. Furthermore, a spacer is placed at the distal end of the flex circuit to apply even bonding pressure over the entire flex circuit attachment area during bonding.
    Type: Application
    Filed: January 5, 2011
    Publication date: April 28, 2011
    Inventors: Mark Arthur HAMBLIN, Steve Porter Hotelling
  • Patent number: 7928965
    Abstract: The efficient incorporation of RFID circuitry within touch sensor panel circuitry is disclosed. The RFID antenna can be placed in the touch sensor panel, such that the touch sensor panel can now additionally function as an RFID transponder. No separate space-consuming RFID antenna is necessary. Loops (single or multiple) forming the loop antenna of the RFID circuit (for either reader or tag applications) can be formed from metal on the same layer as metal traces formed in the borders of a substrate. Forming loops from metal on the same layer as the metal traces are advantageous in that the loops can be formed during the same processing step as the metal traces, without requiring a separate metal layer.
    Type: Grant
    Filed: December 27, 2007
    Date of Patent: April 19, 2011
    Assignee: Apple Inc.
    Inventors: Michael Nathaniel Rosenblatt, Steve Porter Hotelling
  • Patent number: 7920129
    Abstract: A multi-touch capacitive touch sensor panel can be created using a substrate with column and row traces formed on either side of the substrate. To shield the column (sense) traces from the effects of capacitive coupling from a modulated Vcom layer in an adjacent liquid crystal display (LCD) or any source of capacitive coupling, the row traces can be widened to shield the column traces, and the row traces can be placed closer to the LCD. In particular, the rows can be widened so that there is spacing of about 30 microns between adjacent row traces. In this manner, the row traces can serve the dual functions of driving the touch sensor panel, and also the function of shielding the more sensitive column (sense) traces from the effects of capacitive coupling.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: April 5, 2011
    Assignee: Apple Inc.
    Inventors: Steve Porter Hotelling, Brian Richards Land
  • Publication number: 20110037735
    Abstract: Normalization of regions of a sensor panel capable of detecting multi-touch events, or a sensor panel capable of detecting multi-hover events, is disclosed to enable each sensor in the sensor panel to trigger a virtual button in a similar manner, given the same amount of touch or hover. Each sensor produces an output value proportional to the level or amount of touch or hover. However, due to processing, manufacturing and physical design differences, the sensor output values can vary from region to region or panel to panel for a given amount of touch or hover. To normalize the sensor output values across regions, gain and offset information can be obtained in advance, stored in nonvolatile memory, and later used to normalize the sensor output values so that all regions in the sensor panel can trigger virtual buttons similarly, providing a uniform “response function” at any location on the sensor panel.
    Type: Application
    Filed: October 15, 2010
    Publication date: February 17, 2011
    Inventors: Brian Richards LAND, Steve Porter Hotelling, Richard Wei Kwang Lim
  • Publication number: 20110025634
    Abstract: The identification of low noise stimulation frequencies for detecting and localizing touch events on a touch sensor panel is disclosed. Each of a plurality of sense channels can be coupled to a separate sense line in a touch sensor panel and can have multiple mixers, each mixer using a demodulation frequency of a particular frequency, phase and delay. With no stimulation signal applied to any drive lines in the touch sensor panel, pairs of mixers can demodulate the sum of the output of all sense channels using the in-phase (I) and quadrature (Q) signals of a particular frequency. The demodulated outputs of each mixer pair can be used to calculate the magnitude of the noise at that particular frequency, wherein the lower the magnitude, the lower the noise at that frequency. Several low noise frequencies can be selected for use in a subsequent touch sensor panel scan function.
    Type: Application
    Filed: October 13, 2010
    Publication date: February 3, 2011
    Inventors: Christoph Horst KRAH, Steve Porter Hotelling, Sean Erik O'Connor, Wayne Carl Westerman
  • Patent number: 7876311
    Abstract: The identification of low noise stimulation frequencies for detecting and localizing touch events on a touch sensor panel is disclosed. Each of a plurality of sense channels can be coupled to a separate sense line in a touch sensor panel and can have multiple mixers, each mixer using a demodulation frequency of a particular frequency, phase and delay. With no stimulation signal applied to any drive lines in the touch sensor panel, pairs of mixers can demodulate the sum of the output of all sense channels using the in-phase (I) and quadrature (Q) signals of a particular frequency. The demodulated outputs of each mixer pair can be used to calculate the magnitude of the noise at that particular frequency, wherein the lower the magnitude, the lower the noise at that frequency. Several low noise frequencies can be selected for use in a subsequent touch sensor panel scan function.
    Type: Grant
    Filed: June 13, 2007
    Date of Patent: January 25, 2011
    Assignee: Apple Inc.
    Inventors: Christoph Horst Krah, Steve Porter Hotelling, Sean Erik O'Connor, Wayne Carl Westerman
  • Publication number: 20110015889
    Abstract: Pre-stored no-touch or no-hover (no-event) sensor output values can initially be used when a sensor panel subsystem is first booted up to establish an initial baseline of sensor output values unaffected by fingers or other objects touching or hovering over the sensor panel during boot-up. This initial baseline can then be normalized so that each sensor generates the same output value for a given amount of touch or hover, providing a uniform response across the sensor panel and enabling subsequent touch or hover events to be more easily detected. After the initial normalization process is complete, the pre-stored baseline can be discarded in favor of a newly captured no-event baseline that may be more accurate than the pre-stored baseline due to temperature or other variations.
    Type: Application
    Filed: September 24, 2010
    Publication date: January 20, 2011
    Inventors: Brian Richards LAND, Wayne Carl WESTERMAN, Steve Porter HOTELLING
  • Publication number: 20100282416
    Abstract: A method of laminating a surface of a flexible material to a surface of a rigid, curved material. The method includes pressing an area of the surface of the flexible material into the surface of the rigid, curved material with a holder to create a contact area while the flexible material is conformed to the holder, which has a curvature greater than a curvature of the rigid, curved material surface; and changing the contact area between the surface of the flexible material and the surface of the rigid, curved material while maintaining pressure on the contact area until the surface of the flexible material and the surface of the rigid curved material are laminated.
    Type: Application
    Filed: July 23, 2010
    Publication date: November 11, 2010
    Inventors: Kuo SUNG, Troy Edwards, Casey Feinstein, John Zhong, Steve Porter Hotelling, Andrew David Lauder
  • Publication number: 20100149108
    Abstract: A touch sensor panels having segmented electrodes for both the drive and sense lines. The touch sensor panel may include a number of columns of sense electrodes and a number of rows of drive electrodes. Each of the drive and sense electrodes are connected to one of the metal bus lines using a connecting trace. Pixels on the touch sensor panel are formed by the unique pairings of individual drive electrodes and their adjacent sense electrodes. Electrically, the mutual capacitance of one touch-sensing pixel can be distinguished from the mutual capacitance of another touch sensing pixel because the two mutual capacitances are formed with combinations of different drive electrodes and sense electrodes. In one embodiment, the drive electrodes and sense electrodes in adjacent columns are staggered horizontally with respect to each other by half a Y-pitch of the electrodes.
    Type: Application
    Filed: December 11, 2008
    Publication date: June 17, 2010
    Inventors: Steve Porter Hotelling, Martin Paul Grunthaner, Marduke Yousefpor
  • Publication number: 20100141608
    Abstract: Index matching for touch screens is provided. An index matching stackup for a touch screen can be formed including a substantially transparent substrate, a substantially transparent conductive layer disposed in a pattern, and an index matching layer for improving an optical uniformity of the touch screen. The index matching layer can also be designed to operate as a dual-function layer. In one dual-function design, the index matching layer design performs both index matching and passivating the conductive layer. In another dual-function design, the index matching layer performs both index matching and adhesion of layers. The index matching layer can also be designed to serve all three functions of index matching, passivating, and adhering.
    Type: Application
    Filed: December 9, 2008
    Publication date: June 10, 2010
    Inventors: Lili HUANG, Shih Chang Chang, Neal Oldham, Steve Porter Hotelling, John Z. Zhong, Chun-Hao Tung
  • Patent number: 7692638
    Abstract: Normalization of the built-in DC offset error in each analog channel is disclosed to reduce image distortion in multi-event (multi-touch or multi-hover) sensor panels. By eliminating the component-dependent offset error from each analog channel, each analog channel will generate approximately the same output value for a given dynamic input signal. Normalization can include “phantom row” compensation, which involves measuring the static output value of each analog channel when no stimulus is applied to any row of a multi-event sensor panel, and subtracting this value out of any subsequent output value generated by the analog channel. Normalization can also include DAC offset compensation, which involves setting the offset compensation voltage of each analog channel to some fraction of its normal value, measuring the output of the analog channel over temperature, determining a temperature coefficient, and adjusting any subsequent output value generated by the analog channel to account for this drift.
    Type: Grant
    Filed: January 3, 2007
    Date of Patent: April 6, 2010
    Assignee: Apple Inc.
    Inventors: Brian Richards Land, Steve Porter Hotelling
  • Publication number: 20100079402
    Abstract: Methods and apparatus for correcting electrical noise coupling from a liquid crystal module to a plurality of sense elements disposed within a touch sensor panel, and for reducing errors in touch detection algorithms. Erroneous signal values detected by the sense elements may be corrected by utilizing a set of reference elements for detecting noise common to both the sense elements and the reference elements, and a correction module for effectively subtracting out the noise from the sensed values. Errors in touch detection algorithms may be reduced by providing a more uniform spacing between successive sense elements. In some embodiments, one or more dummy ground elements may be inserted between adjacent sense elements in order to reduce signal interference.
    Type: Application
    Filed: September 26, 2008
    Publication date: April 1, 2010
    Applicant: Apple Inc.
    Inventors: Martin Paul Grunthaner, Steve Porter Hotelling