Patents by Inventor Steve R. Gonda

Steve R. Gonda has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9023642
    Abstract: A bioreactor and method that permits continuous and simultaneous short, moderate, or long term cell culturing of one or more cell types or tissue in a laminar flow configuration is disclosed, where the bioreactor supports at least two laminar flow zones, which are isolated by laminar flow without the need for physical barriers between the zones. The bioreactors of this invention are ideally suited for studying short, moderate and long term studies of cell cultures and the response of cell cultures to one or more stressors such as pharmaceuticals, hypoxia, pathogens, or any other stressor. The bioreactors of this invention are also ideally suited for short, moderate or long term cell culturing with periodic cell harvesting and/or medium processing for secreted cellular components.
    Type: Grant
    Filed: July 6, 2007
    Date of Patent: May 5, 2015
    Assignee: The University of Houston System
    Inventors: Stanley J. Kleis, Sandra K. Geffert, Steve R. Gonda
  • Patent number: 8580546
    Abstract: A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.
    Type: Grant
    Filed: November 29, 2012
    Date of Patent: November 12, 2013
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Steve R. Gonda, Robert C. Chang, Binil Starly, Christopher Culbertson, Heidi L. Holtorf, Wei Sun, Julia Leslie
  • Patent number: 8343740
    Abstract: A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.
    Type: Grant
    Filed: March 28, 2008
    Date of Patent: January 1, 2013
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Steve R. Gonda, Iris von Gustedt-Gonda, legal representative, Robert C. Chang, Binil Starly, Christopher Culbertson, Heidi L. Holtorf, Wei Sun, Julia Leslie
  • Publication number: 20080261288
    Abstract: A method for fabricating a micro-organ device comprises providing a microscale support having one or more microfluidic channels and one or more micro-chambers for housing a micro-organ and printing a micro-organ on the microscale support using a cell suspension in a syringe controlled by a computer-aided tissue engineering system, wherein the cell suspension comprises cells suspended in a solution containing a material that functions as a three-dimensional scaffold. The printing is performed with the computer-aided tissue engineering system according to a particular pattern. The micro-organ device comprises at least one micro-chamber each housing a micro-organ; and at least one microfluidic channel connected to the micro-chamber, wherein the micro-organ comprises cells arranged in a configuration that includes microscale spacing between portions of the cells to facilitate diffusion exchange between the cells and a medium supplied from the at least one microfluidic channel.
    Type: Application
    Filed: March 28, 2008
    Publication date: October 23, 2008
    Inventors: Steve R. Gonda, Iris von Gustedt-Gonda, Robert C. Chang, Binil Starly, Christopher Culbertson, Heidi L. Holtorf, Wie Sun, Julia Leslie
  • Patent number: 7122071
    Abstract: A gas-liquid separator uses a helical passageway to impart a spiral motion to a fluid passing therethrough. The centrifugal force generated by the spiraling motion urges the liquid component of the fluid radially outward which forces the gas component radially inward. The gas component is then separated through a gas-permeable, liquid-impervious membrane and discharged through a central passageway. A filter material captures target substances contained in the fluid.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: October 17, 2006
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Steve R. Gonda, Yow-Min D. Tsao, Wenshan Lee
  • Patent number: 6863712
    Abstract: A gas-liquid separator uses a helical passageway to impart a spiral motion to a fluid passing therethrough. The centrifugal fore generated by the spiraling motion urges the liquid component of the fluid radially outward which forces the gas component radially inward. The gas component is then filtered through a gas-permeable, liquid-impervious membrane and discharged through a central passageway.
    Type: Grant
    Filed: September 25, 2002
    Date of Patent: March 8, 2005
    Assignee: The United States of America as represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Steve R. Gonda, Yow-Min D. Tsao, Wenshan Lee