Patents by Inventor Steve Sapp

Steve Sapp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8658500
    Abstract: Semiconductor devices and methods for making such devices are described. The UMOS semiconductor devices contain single-crystal gates that have been re-grown or formed at low temperature using microwaves. The devices can be formed by providing a semiconductor substrate, forming a trench in the substrate, forming an insulating layer in the trench, depositing a pre-gate layer on the insulating layer, the pre-gate layer comprising a conductive and/or semiconductive material (Si or SiGe) with a non-single crystal structure, contacting the pre-gate layer with a seed layer with a single-crystal structure, and heating the pre-gate layer using microwaves at low temperatures to recrystallize the non-single crystal structure into a single-crystal structure. These processes can improve the resistance and mobility of the gate either as a single crystal structure, optionally with a silicide contact above the source-well junction, enabling a higher switching speed UMOS device. Other embodiments are described.
    Type: Grant
    Filed: July 6, 2012
    Date of Patent: February 25, 2014
    Assignee: Fairchild Semiconductor Corporation
    Inventors: Robert J. Purtell, Steve Sapp
  • Publication number: 20130023096
    Abstract: Semiconductor devices and methods for making such devices are described. The UMOS semiconductor devices contain single-crystal gates that have been re-grown or formed at low temperature using microwaves. The devices can be formed by providing a semiconductor substrate, forming a trench in the substrate, forming an insulating layer in the trench, depositing a pre-gate layer on the insulating layer, the pre-gate layer comprising a conductive and/or semiconductive material (Si or SiGe) with a non-single crystal structure, contacting the pre-gate layer with a seed layer with a single-crystal structure, and heating the pre-gate layer using microwaves at low temperatures to recrystallize the non-single crystal structure into a single-crystal structure. These processes can improve the resistance and mobility of the gate either as a single crystal structure, optionally with a silicide contact above the source-well junction, enabling a higher switching speed UMOS device. Other embodiments are described.
    Type: Application
    Filed: July 6, 2012
    Publication date: January 24, 2013
    Inventors: Robert J. Purtell, Steve Sapp