Patents by Inventor Steven A. Edwards

Steven A. Edwards has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9775775
    Abstract: Coated pharmaceutical packages are disclosed. In embodiments, a coated pharmaceutical package includes a glass body comprising a first surface. A low-friction coating may be positioned on at least a portion of the first surface of the glass body. The low-friction coating may include a polymer chemical composition. A light transmission through the coated pharmaceutical package may be greater than or equal to about 55% of a light transmission through an uncoated pharmaceutical package for wavelengths from about 400 nm to about 700 nm. The low-friction coating may have a mass loss of less than about 5% of its mass when heated from a temperature of 150° C. to 350° C. at a ramp rate of about 10° C./minute.
    Type: Grant
    Filed: July 29, 2015
    Date of Patent: October 3, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 9763852
    Abstract: Low-friction coatings and glass articles with low-friction coatings are disclosed. According to one embodiment, a coated glass article may include a glass body comprising a first surface and a low-friction coating positioned on at least a portion of the first surface of the glass body. The low-friction coating may include a polymer chemical composition. The coated glass article may be thermally stable at a temperature of at least about 260° C. for 30 minutes. A light transmission through the coated glass article may be greater than or equal to about 55% of a light transmission through an uncoated glass article for wavelengths from about 400 nm to about 700 nm. The low-friction coating may have a mass loss of less than about 5% of its mass when heated from a temperature of 150° C. to 350° C. at a ramp rate of about 10° C./minute.
    Type: Grant
    Filed: February 28, 2013
    Date of Patent: September 19, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 9758252
    Abstract: A method for reducing a turbine clearance gap between a plurality of rotor blades of a turbine engine and a shroud of the turbine engine is provided. The method includes determining that an airplane is in a first flight condition, and adjusting the turbine clearance gap to a first clearance gap distance associated with the first flight condition. The method also includes determining a demand for a second flight condition, and adjusting an engine responsiveness to a first engine responsiveness for a first predetermined change in a power parameter of the engine. The method further includes reducing the engine responsiveness from the first engine responsiveness level to a second engine responsiveness level for a second predetermined change in the power parameter of the engine, and closing a clearance control valve associated with the shroud during the second predetermined change in the power parameter of the engine.
    Type: Grant
    Filed: March 22, 2016
    Date of Patent: September 12, 2017
    Assignee: General Electric Company
    Inventors: Sridhar Adibhatla, Steven Edward Nolte, Gerhard Walter Moeller, Christopher Timothy Gallagher, John William Hanify, Grant Alan Ingram
  • Publication number: 20170254216
    Abstract: A pipe fault detection system is provided for a gas turbine engine having a compressor and a turbine. The pipe fault detection system includes a cooling manifold configured to direct cooling air from the compressor to the turbine. The cooling manifold includes at least two cooling pipes, a sensor configured to detect an operating condition indicative of a pipe break, and a controller configured to control the amount of cooling air through the cooling manifold in response to the operating condition detected by the sensor.
    Type: Application
    Filed: March 2, 2016
    Publication date: September 7, 2017
    Inventors: Sridhar Adibhatla, Steven Edward Nolte, Jeffrey Wayne Litzler
  • Publication number: 20170256922
    Abstract: A switchgear enclosure is provided. The switchgear enclosure includes a plurality of switchgear panels and a plurality of ducts extending through the switchgear panels. Each switchgear panel includes an exterior housing, a busbar compartment defined within the exterior housing, and an exhaust system. The busbar compartment surrounds a busbar extending through the switchgear panel. The exhaust system includes a vent path structure configured within the exterior housing to at least partially surround the busbar compartment, a first channel defined between the vent path structure and the exterior housing, and a first vent opening formed on the vent path structure. The first vent opening directs arc gases within said busbar compartment to the first channel. The ducts are in fluid communication with the first channels of the switchgear panels to distribute arc gases between the first channels.
    Type: Application
    Filed: February 16, 2017
    Publication date: September 7, 2017
    Inventors: Samir RAJAURIA, Steven Edward MEINERS, Hao WU, Ayyappa Reddy JAKKIREDDY, Guru Moorthy KURRA
  • Patent number: 9750671
    Abstract: Methods of making personal care compositions including microcapsules and methods of enhancing the efficacy of the microcapsules in said personal care compositions.
    Type: Grant
    Filed: January 23, 2017
    Date of Patent: September 5, 2017
    Assignee: The Procter & Gamble Company
    Inventors: Jonathan Robert Cetti, Jiten Odhavji Dihora, Steven Edward Witt, Eric Shane Henley
  • Publication number: 20170247287
    Abstract: According to one embodiment, a glass article may include a glass body having a first surface and a second surface opposite the first surface. The first surface and the second surface each have a radius of curvature. The first surface of the glass body comprises a flaw population extending from the first surface into a thickness of the glass body with a maximum initial flaw depth Ai. The first surface of the glass body may be etched to a depth less than or equal to about 25% of the maximum initial flaw depth Ai of the flaw population present in the first surface. When the glass article is under uniaxial compressive loading, at least a portion of the first surface is in tension and a uniaxial compressive strength of the glass article is greater than or equal to 90% of a uniaxial compressive strength of a flaw-free glass article.
    Type: Application
    Filed: September 4, 2015
    Publication date: August 31, 2017
    Applicant: CORNING INCORPORATED
    Inventors: Steven Edward DeMartino, Adam James Ellison, Kyle Christopher Hoff
  • Patent number: 9744099
    Abstract: A coated glass pharmaceutical package may include a body formed from borosilicate glass that meets the Type 1 criteria according to USP <660>. The body may have an interior surface and an exterior surface. A low-friction coating having a thickness of less than 100 microns may be positioned on at least a portion of the exterior surface. The portion of the exterior surface with the low-friction coating may have a coefficient of friction that is at least 20% less than an uncoated glass pharmaceutical package formed from the same glass composition and the coefficient of friction may not increase by more than 30% after undergoing a depyrogenation cycle at a temperature of from 250° C. to 400° C. for a time period of from 30 seconds to 72 hours.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: August 29, 2017
    Assignee: CORNING INCORPORATED
    Inventors: Andrei Gennadyevich Fadeev, Theresa Chang, Dana Craig Bookbinder, Santona Pal, Chandan Kumar Saha, Steven Edward DeMartino, Christopher Lee Timmons, John Stephen Peanasky
  • Patent number: 9738970
    Abstract: The present disclosure relates to substrates for use in microwave plasma reactors. Certain substrates include a cylindrical disc of a carbide forming refractory metal having a flat growth surface on which CVD diamond is to be grown and a flat supporting surface opposed to said growth surface. The cylindrical disc may have a diameter of 80 mm or more. The growth surface may have a flatness variation no more than 100 mm The supporting surface may have a flatness variation no more than 100 mm.
    Type: Grant
    Filed: September 11, 2014
    Date of Patent: August 22, 2017
    Assignee: Element Six Limited
    Inventors: Carlton Nigel Dodge, Paul Nicolas Inglis, Geoffrey Alan Scarsbrook, Timothy Peter Mollart, Charles Simon James Pickles, Steven Edward Coe, Joseph Michael Dodson, Alexander Lamb Cullen, John Robert Brandon, Christopher John Howard Wort
  • Patent number: 9717648
    Abstract: The present invention is based, at least in part, on the identification of a pharmaceutical container formed, at least in part, of a glass composition which exhibits a reduced propensity to delaminate, i.e., a reduced propensity to shed glass particulates. As a result, the presently claimed containers are particularly suited for storage of pharmaceutical compositions and, specifically, a pharmaceutical solution comprising a pharmaceutically active ingredient, for example, daclizumab (ZENAPAX®).
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: August 1, 2017
    Assignee: Corning Incorporated
    Inventors: Wendell P. Weeks, Robert Anthony Schaut, Steven Edward DeMartino, John Stephen Peanasky
  • Patent number: 9717649
    Abstract: The present invention is based, at least in part, on the identification of a pharmaceutical container formed, at least in part, of a glass composition which exhibits a reduced propensity to delaminate, i.e., a reduced propensity to shed glass particulates. As a result, the presently claimed containers are particularly suited for storage of pharmaceutical compositions and, specifically, a pharmaceutical solution comprising a pharmaceutically active ingredient, for example, Prolia® (denosumab), Xgeva® (denosumab), Aranesp® (darbepoetin alfa), AMG-145, romosozumab (AMG-785), ganitumab (AMG-479), trebananib (AMG-386), brodalumab (AMG-827), and rilotumumab (AMG-102).
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: August 1, 2017
    Assignee: Corning Incorporated
    Inventors: Wendell P. Weeks, Robert Anthony Schaut, Steven Edward DeMartino, John Stephen Peanasky
  • Patent number: 9713572
    Abstract: The present invention is based, at least in part, on the identification of a pharmaceutical container formed, at least in part, of a glass composition which exhibits a reduced propensity to delaminate, i.e., a reduced propensity to shed glass particulates. As a result, the presently claimed containers are particularly suited for storage of pharmaceutical compositions and, specifically, a pharmaceutical solution comprising a pharmaceutically active ingredient, for example, PERJETA (pertuzumab), ACTEMRA (tocilizumab), KADCYLA (trastuzumab emtansine), MetMAb (onartuzumab), obinutuzumab, ocrelizumab or lebrikizumab.
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: July 25, 2017
    Assignee: Corning Incorporated
    Inventors: Wendell P. Weeks, Robert Anthony Schaut, Steven Edward DeMartino, John Stephen Peanasky
  • Patent number: 9707154
    Abstract: The present invention is based, at least in part, on the identification of a pharmaceutical container formed, at least in part, of a glass composition which exhibits a reduced propensity to delaminate, i.e., a reduced propensity to shed glass particulates. As a result, the presently claimed containers are particularly suited for storage of pharmaceutical compositions and, specifically, a pharmaceutical solution comprising a pharmaceutically active ingredient, for example, LUCENTIS® (ranibizumab), BEXSERO® (meningococcal group B vaccine [rDNA, component, adsorbed]), AIN457 (secukinumab) or RELAXIN® (serelaxin).
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: July 18, 2017
    Assignee: Corning Incorporated
    Inventors: Wendell P. Weeks, Robert Anthony Schaut, Steven Edward DeMartino, John Stephen Peanasky
  • Patent number: 9707153
    Abstract: The present invention is based, at least in part, on the identification of a pharmaceutical container formed, at least in part, of a glass composition which exhibits a reduced propensity to delaminate, i.e., a reduced propensity to shed glass particulates. As a result, the presently claimed containers are particularly suited for storage of pharmaceutical compositions and, specifically, a pharmaceutical solution comprising a pharmaceutically active ingredient, for example, PREVNAR 13 (Pneumococcal 13-valent Conjugate Vaccine).
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: July 18, 2017
    Assignee: Corning Incorporated
    Inventors: Wendell P. Weeks, Robert Anthony Schaut, Steven Edward DeMartino, John Stephen Peanasky
  • Patent number: 9707658
    Abstract: An edge finishing apparatus includes a surface, a fluid delivery device configured to deliver at least one magnetorheological polishing fluid (MPF) ribbon to the at least one well, at least one magnet placed adjacent to the surface to selectively apply a magnetic field in a vicinity of the surface, and at least one holder placed in opposing relation to the surface, the at least one holder being configured to support at least one article such that an edge of the at least one article can be selectively immersed in the MPF ribbon delivered to the at least one well.
    Type: Grant
    Filed: July 7, 2015
    Date of Patent: July 18, 2017
    Assignee: Corning Incorporated
    Inventors: Charles Michael Darcangelo, Steven Edward DeMartino, Aric Bruce Shorey, Daniel Duane Strong, David Alan Tammaro, Butchi Reddy Vaddi
  • Patent number: 9707155
    Abstract: The present invention is based, at least in part, on the identification of a pharmaceutical container formed, at least in part, of a glass composition which exhibits a reduced propensity to delaminate, i.e., a reduced propensity to shed glass particulates. As a result, the presently claimed containers are particularly suited for storage of pharmaceutical compositions and, specifically, a pharmaceutical solution comprising a pharmaceutically active ingredient, for example, LYXUMIA (lixisenatide), LEMTRADA (alemtuzumab), REGN727/SAR236553 (alirocumab), SAR2405550/BSI-201 (iniparib), OTAMIXABAN (otamixaban), SARILUMAB (sarilumab), LANTUS and LYXUMIA (insulin glargine and lixisenatide) or VISAMERIN/MULSEVO (semuloparin sodium).
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: July 18, 2017
    Assignee: Corning Incorporated
    Inventors: Wendell P. Weeks, Robert Anthony Schaut, Steven Edward DeMartino, John Stephen Peanasky
  • Patent number: 9707643
    Abstract: The invention relates generally to welding and, more specifically, to welding wires for arc welding, such as Gas Metal Arc Welding (GMAW) or Flux Core Arc Welding (FCAW). In one embodiment, a tubular welding wire includes a sheath and a core. Further, the core includes a carbon source and an agglomerate having a Group I or Group II compound, silicon dioxide, and titanium dioxide. Additionally, the carbon source and the agglomerate together comprise less than 10% of the core by weight.
    Type: Grant
    Filed: April 4, 2013
    Date of Patent: July 18, 2017
    Assignee: HOBART BROTHERS COMPANY
    Inventors: Steven Edward Barhorst, Mario Anthony Amata
  • Patent number: 9708975
    Abstract: An oscillating rotating engine has one or more rotating and oscillating rotors traveling around a shaft, crankshaft or central axis. As the rotor oscillates and rotates in one consistent motion, successive chambers are positioned at intake, compression, ignition, and exhaust locations to complete the two or four cycle combustion sequence, one or more times per rotation in relation to the accompanying housings. Igniting the air-fuel mixture in the ignition position causes the rotor to oscillate and rotate, and if present, rotate the crank shaft.
    Type: Grant
    Filed: October 21, 2014
    Date of Patent: July 18, 2017
    Inventor: Steven Edward Pardue
  • Patent number: 9700954
    Abstract: This disclosure relates generally to welding, and more specifically, to submerged arc welding (SAW). In an embodiment, a welding system includes a gas supply system configured to provide a gas flow. The system also includes a wire supply system configured to provide welding wire, and a flux supply system configured to provide flux near a welding arc during submerged arc welding (SAW). The system further includes a welding torch assembly configured to receive the gas flow and the welding wire and to deliver the gas flow and the welding wire near the welding arc during SAW.
    Type: Grant
    Filed: July 16, 2013
    Date of Patent: July 11, 2017
    Assignee: ILLINOIS TOOL WORKS INC.
    Inventors: Kenneth Allen Fisher, Mario Anthony Amata, Steven Edward Barhorst, Joseph C. Bundy
  • Patent number: 9700485
    Abstract: The present invention is based, at least in part, on the identification of a pharmaceutical container formed, at least in part, of a glass composition which exhibits a reduced propensity to delaminate, i.e., a reduced propensity to shed glass particulates. As a result, the presently claimed containers are particularly suited for storage of pharmaceutical compositions and, specifically, a pharmaceutical solution comprising a pharmaceutically active ingredient, for example, FORTEO® (recombinant human teriparatide), DULAGLUTIDE® (LY2189265), recombinant insulin glargine, RAMUCIRUMAB® (IMC-1121B), SOLANEZUMAB® (LY2062430), IXEKIZUMAB® (LY2439821), TABALUMAB® (LY2127399), NECITUMUMAB® (IMC-11F8), or CIXUTUMUMAB® (IMC-A12).
    Type: Grant
    Filed: April 23, 2014
    Date of Patent: July 11, 2017
    Assignee: Corning Incorporated
    Inventors: Wendell P. Weeks, Robert Anthony Schaut, Steven Edward DeMartino, John Stephen Peanasky