Patents by Inventor Steven A. Eschrich

Steven A. Eschrich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220002807
    Abstract: Disclosed is a gene expression panel that can predict radiation sensitivity (radiosensitivity) of a tumor in a subject. A method of predicting radiation sensitivity is provided that is based on cellular clonogenic survival after 2 Gy (SF2) for 48 cell lines. Gene expression is used as the basis of the prediction model. The radiosensitivity cell-based prediction model is validated using clinical patient data from rectal and esophagus cancer patients that received RT before surgery. The radiosensitivity genomic-based prediction model identifies patients with rectal cancer that may benefit from RT treatment by assigning higher values of SF2 to radio-resistant patients and lower values of SF2 to radio-sensitive patients.
    Type: Application
    Filed: June 8, 2021
    Publication date: January 6, 2022
    Inventors: Florentino A. Rico, Grisselle Centeno, Ludwig Kuznia, Steven A. Eschrich, Javier F. Torres-Roca
  • Publication number: 20190367989
    Abstract: Disclosed is a gene expression panel that can predict radiation sensitivity (radiosensitivity) of a tumor in a subject. A method of predicting radiation sensitivity is provided that is based on cellular clonogenic survival after 2 Gy (SF2) for 48 cell lines. Gene expression is used as the basis of the prediction model. The radiosensitivity cell-based prediction model is validated using clinical patient data from rectal and esophagus cancer patients that received RT before surgery. The radiosensitivity genomic-based prediction model identifies patients with rectal cancer that may benefit from RT treatment by assigning higher values of SF2 to radio-resistant patients and lower values of SF2 to radio-sensitive patients.
    Type: Application
    Filed: July 16, 2019
    Publication date: December 5, 2019
    Inventors: Florentino A. Rico, Grisselle Centeno, Ludwig Kuznia, Steven A. Eschrich, Javier F. Torres-Roca
  • Patent number: 10339653
    Abstract: An example method for analyzing quantitative information obtained from radiological images includes identifying a ROI or a VOI in a radiological image, segmenting the ROI or the VOI from the radiological image and extracting quantitative features that describe the ROI or the VOI. The method also includes creating a radiological image record including the quantitative features, imaging parameters of the radiological image and clinical parameters and storing the radiological image record in a data structure containing a plurality of radiological image records. In addition, the method includes receiving a request with the patient's radiological image or information related thereto, analyzing the data structure to determine a statistical relationship between the request and the radiological image records and generating a patient report with a diagnosis, a prognosis or a recommended treatment regimen for the patient's disease based on a result of analyzing the data structure.
    Type: Grant
    Filed: July 31, 2017
    Date of Patent: July 2, 2019
    Assignees: H. Lee Moffitt Cancer Center and Research Institute, Inc., The Board of Trustees of the Leland Stanford Junior University, Stichting Maastricht Radiation Oncology ‘Maastro Clinic’
    Inventors: Robert J. Gillies, Steven A. Eschrich, Robert A. Gatenby, Philippe Lambin, Andreas L. A. J. Dekker, Sandy A. Napel, Sylvia K. Plevritis, Daniel L. Rubin
  • Publication number: 20170358079
    Abstract: An example method for analyzing quantitative information obtained from radiological images includes identifying a ROI or a VOI in a radiological image, segmenting the ROI or the VOI from the radiological image and extracting quantitative features that describe the ROI or the VOI. The method also includes creating a radiological image record including the quantitative features, imaging parameters of the radiological image and clinical parameters and storing the radiological image record in a data structure containing a plurality of radiological image records. In addition, the method includes receiving a request with the patient's radiological image or information related thereto, analyzing the data structure to determine a statistical relationship between the request and the radiological image records and generating a patient report with a diagnosis, a prognosis or a recommended treatment regimen for the patient's disease based on a result of analyzing the data structure.
    Type: Application
    Filed: July 31, 2017
    Publication date: December 14, 2017
    Inventors: Robert J. Gillies, Steven A. Eschrich, Robert A. Gatenby, Philippe Lambin, Andreas L.A.J. Dekker, Sandy A. Napel, Sylvia K. Plevritis, Daniel L. Rubin
  • Publication number: 20170283873
    Abstract: Disclosed is a gene expression panel that can predict radiation sensitivity (radiosensitivity) of a tumor in a subject. A method of predicting radiation sensitivity is provided that is based on cellular clonogenic survival after 2 Gy (SF2) for 48 cell lines. Gene expression is used as the basis of the prediction model. The radiosensitivity cell-based prediction model is validated using clinical patient data from rectal and esophagus cancer patients that received RT before surgery. The radiosensitivity genomic-based pre-diction model identifies patients with rectal cancer that may benefit from RT treatment by assigning higher values of SF2 to radio-resistant patients and lower values of SF2 to radio-sensitive patients.
    Type: Application
    Filed: September 11, 2015
    Publication date: October 5, 2017
    Inventors: Florentino A. RICO, Grisselle CENTENO, Ludwig KUZNIA, Steven A. ESCHRICH, Javier F. TORRES-ROCA
  • Patent number: 9721340
    Abstract: An example method for analyzing quantitative information obtained from radiological images includes identifying a ROI or a VOI in a radiological image, segmenting the ROI or the VOI from the radiological image and extracting quantitative features that describe the ROI or the VOI. The method also includes creating a radiological image record including the quantitative features, imaging parameters of the radiological image and clinical parameters and storing the radiological image record in a data structure containing a plurality of radiological image records. In addition, the method includes receiving a request with the patient's radiological image or information related thereto, analyzing the data structure to determine a statistical relationship between the request and the radiological image records and generating a patient report with a diagnosis, a prognosis or a recommended treatment regimen for the patient's disease based on a result of analyzing the data structure.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: August 1, 2017
    Assignee: H. Lee Moffitt Cancer Center and Research Institute, Inc.
    Inventors: Robert J. Gillies, Steven A. Eschrich, Robert A. Gatenby, Philippe Lambin, Andreas L. A. J. Dekker, Sandy A. Napel, Sylvia K. Plevritis, Daniel L. Rubin
  • Publication number: 20160203599
    Abstract: An example method for analyzing quantitative information obtained from radiological images includes identifying a ROI or a VOI in a radiological image, segmenting the ROI or the VOI from the radiological image and extracting quantitative features that describe the ROI or the VOI. The method also includes creating a radiological image record including the quantitative features, imaging parameters of the radiological image and clinical parameters and storing the radiological image record in a data structure containing a plurality of radiological image records. In addition, the method includes receiving a request with the patient's radiological image or information related thereto, analyzing the data structure to determine a statistical relationship between the request and the radiological image records and generating a patient report with a diagnosis, a prognosis or a recommended treatment regimen for the patient's disease based on a result of analyzing the data structure.
    Type: Application
    Filed: August 13, 2014
    Publication date: July 14, 2016
    Inventors: Robert J. Gillies, Steven A. Eschrich, Robert A. Gatenby, Philippe Lambin, Andreas L.A.J. Dekker, Sandy A. Napel, Sylvia K. Plevritis, Daniel L. Rubin
  • Patent number: 8642349
    Abstract: Here the inventors describe a tumor classifier based on protein expression. Also disclosed is the use of proteomics to construct a highly accurate artificial neural network (ANN)-based classifier for the detection of an individual tumor type, as well as distinguishing between six common tumor types in an unknown primary diagnosis setting. Discriminating sets of proteins are also identified and are used as biomarkers for six carcinomas. A leave-one-out cross validation (LOOCV) method was used to test the ability of the constructed network to predict the single held out sample from each iteration with a maximum predictive accuracy of 87% and an average predictive accuracy of 82% over the range of proteins chosen for its construction.
    Type: Grant
    Filed: August 13, 2007
    Date of Patent: February 4, 2014
    Assignees: H. Lee Moffitt Cancer Center and Research Institute, Inc., University of South Florida
    Inventors: Timothy J. Yeatman, Jeff Xiwu Zhou, Gregory C. Bloom, Steven A. Eschrich