Patents by Inventor Steven A. Porter

Steven A. Porter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8507811
    Abstract: Capacitive touch panels may include a plurality of positive voltage lines that are driven at a first phase. These positive voltage lines may be used to provide the drive capacitance signal sensed by one or more sense regions. The touch panels may also include a plurality of negative phase voltage lines that are driven at a phase that is different than the first phase. Both the positive and negative voltage lines may cross-under one or more sense regions. The negative phase voltage lines are able to counter act and reduce the static capacitance in the sense regions.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: August 13, 2013
    Assignee: Apple Inc.
    Inventors: Steven Porter Hotelling, Marduke Yousefpor
  • Patent number: 8502799
    Abstract: Displays with touch sensing circuitry integrated into the display pixel stackup are provided. An integrated touch screen can include multi-function circuit elements that can operate as circuitry of the display system to generate an image on the display, and can also form part of a touch sensing system that senses one or more touches on or near the display. The multi-function circuit elements can be, for example, capacitors in display pixels that can be configured to operate as storage capacitors/electrodes, common electrodes, conductive wires/pathways, etc., of the display circuitry in the display system, and that may also be configured to operate as circuit elements of the touch sensing circuitry.
    Type: Grant
    Filed: December 17, 2012
    Date of Patent: August 6, 2013
    Assignee: Apple Inc.
    Inventors: Steven Porter Hotelling, Marduke Yousefpor, Shih Chang Chang, John Z. Zhong
  • Patent number: 8482544
    Abstract: Negative pixel compensation in a touch sensitive device is disclosed. The device can compensate for a negative pixel effect in touch signal outputs due to poor grounding of an object touching the device. To do so, the device can switch to a configuration to measure the grounding condition of the touching object and use the measurement to compensate the touch output values from the device accordingly. In the switched configuration, a first set of lines of the device can be switched between a coupling to a stimulation signal input to drive the device, a coupling to a capacitance signal output to output a signal indicative of the object's grounding condition, and a coupling to ground. A second set of lines of the device can be coupled to a touch signal output to output a signal indicative of the object's touch at the device. In addition or alternatively, in the switched configuration, the first set of lines of the device can be switched to function as the second set of lines and vice versa.
    Type: Grant
    Filed: July 10, 2009
    Date of Patent: July 9, 2013
    Assignee: Apple Inc.
    Inventors: Brian Richards Land, Marduke Yousefpor, Steven Porter Hotelling
  • Patent number: 8475872
    Abstract: Simplified patterning of layers of a thin film is disclosed. In some embodiments, the patterning can include patterning a first conductive layer using a patterned dielectric layer as a mask and patterning a second conductive layer using a patterned passivation layer as another mask. In other embodiments, the patterning can include patterning a first conductive layer using a removable photosensitive layer as a mask, patterning a black mask layer using a removable photo mask, and patterning a second conductive layer using a patterned passivation layer as another mask. In still other embodiments, the patterning can include patterning a first conductive layer using a patterned black mask layer as a mask and patterning a second conductive layer using a patterned passivation layer as another mask. An exemplary device utilizing the thin film so patterned can include a touch sensor panel.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: July 2, 2013
    Assignee: Apple Inc.
    Inventors: Sunggu Kang, Lili Huang, Steven Porter Hotelling, John Z. Zhong
  • Publication number: 20130099854
    Abstract: A noise suppression circuit for a power adapter is disclosed. The noise suppression circuit can reduce or eliminate adapter-induced noise that could interfere with an electronic device powered by the adapter. In one example, the noise suppression circuit can include an active circuit to detect and attenuate or cancel the induced noise. In another example, the noise suppression circuit can include an RLC circuit in parallel with the adapter choke to suppress the induced noise at the operating frequencies of the powered electronic device. In still another example, the noise suppression circuit can include a modified adapter Y capacitor connection so as to bypass the adapter choke, thereby reducing or eliminating the choke's induced noise.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 25, 2013
    Inventors: Peter W. RICHARDS, Steven Porter Hotelling
  • Patent number: 8390582
    Abstract: Displays with integrated touch sensing circuitry are provided. An integrated touch screen can include multi-function circuit elements that form part of the display circuitry of the display system that generates an image on the display, and also form part of the touch sensing circuitry of a touch sensing system that senses one or more touches on or near the display. The multi-function circuit elements can be, for example, capacitors in display pixels of an LCD that are configured to operate as display circuitry in the display system, and that may also be configured to operate as touch circuitry of the touch sensing system. For example, one or more circuit elements of the display pixel stackup can form a conductive portion of the touch sensing system, such as a charge collector, which can be operated with switches and conductive lines to sense touch.
    Type: Grant
    Filed: August 25, 2009
    Date of Patent: March 5, 2013
    Assignee: Apple Inc.
    Inventors: Steven Porter Hotelling, Marduke Yousefpor, Shih Chang Chang, John Z. Zhong
  • Patent number: 8363027
    Abstract: Displays with touch sensing circuitry integrated into the display pixel stackup are provided. An integrated touch screen can include multi-function circuit elements that can operate as circuitry of the display system to generate an image on the display, and can also form part of a touch sensing system that senses one or more touches on or near the display. The multi-function circuit elements can be, for example, capacitors in display pixels that can be configured to operate as storage capacitors/electrodes, common electrodes, conductive wires/pathways, etc., of the display circuitry in the display system, and that may also be configured to operate as circuit elements of the touch sensing circuitry.
    Type: Grant
    Filed: June 19, 2012
    Date of Patent: January 29, 2013
    Assignee: Apple Inc.
    Inventors: Steven Porter Hotelling, Marduke Yousefpor, Shih Chang Chang, John Z. Zhong
  • Publication number: 20130018489
    Abstract: Combined force and proximity sensing is disclosed. One or more sensors can concurrently sense a force applied by an object on a device surface and a proximity of the object to the surface. In an example, a single sensor can sense both force and proximity via a resistance change and a capacitance change, respectively, at the sensor. In another example, multiple sensors can be used, where one sensor can sense force via either a resistance change or a capacitance change and another sensor can sense proximity via a capacitance change.
    Type: Application
    Filed: July 14, 2011
    Publication date: January 17, 2013
    Inventors: Martin Paul GRUNTHANER, Fletcher R. ROTHKOPF, Christopher Tenzin MULLENS, Steven Porter HOTELLING, Sean Erik O'CONNOR
  • Publication number: 20120326990
    Abstract: Flexible circuits for routing signals of a device, such as a touch sensor panel of a touch sensitive device, are provided. The flexible circuit can include a first set of traces for routing a first set of lines and a second set of traces for routing a second set of lines. The first set of traces can couple together the ends of at least a portion of the first set of lines. Additionally, the first set of traces can be non-intersecting or non-overlapping with the second set of traces. The flexible circuit can have a T-shape configuration and can be incorporated within a touch sensitive device, display device, printed circuit board, or the like. The flexible circuit can be placed over another flexible circuit, and can extend onto the device.
    Type: Application
    Filed: June 21, 2011
    Publication date: December 27, 2012
    Inventors: Joshua G. Wurzel, Steven J. Martisauskas, Thayne M. Miller, Steven Porter Hotelling, Kuo-Hua Sung
  • Publication number: 20120331546
    Abstract: An intelligent stylus is disclosed. The stylus can provide a stylus condition in addition to a touch input. The stylus architecture can include multiple sensors to sense information indicative of the stylus condition, a microcontroller to determine the stylus condition based on the sensed information, and a transmitter to transmit the determined condition to a corresponding touch sensitive device so as to cause some action based on the condition.
    Type: Application
    Filed: June 22, 2011
    Publication date: December 27, 2012
    Inventors: David R. FALKENBURG, David I. Simon, Jonah A. Harley, Andrea Mucignat, Brian Richards Land, Christopher Tenzin Mullens, Steven Porter Hotelling
  • Publication number: 20120327042
    Abstract: Stylus orientation detection is disclosed. In an example, the orientation of a stylus relative to a contacting surface, e.g., a touch panel, can be detected by detecting a capacitance at one or more locations on the stylus relative to the surface, and then using the capacitance(s) to determine the orientation of the stylus relative to the surface. In another example, the orientation of a stylus relative to a contacting surface, e.g., a touch panel, can be detected by first detecting the orientation of the stylus relative to a reference, detecting the orientation of the contacting surface relative to the reference, and then calculating the orientation of the stylus relative to the contacting surface using the two detected orientations.
    Type: Application
    Filed: June 22, 2011
    Publication date: December 27, 2012
    Inventors: Jonah A. HARLEY, Li-Quan TAN, Debanjan MUKHERJEE, Steven Porter HOTELLING
  • Publication number: 20120299971
    Abstract: With respect to liquid crystal display inversion schemes, a large change in voltage on a data line can affect the voltages on adjacent data lines due to capacitive coupling between data lines. The resulting change in voltage on these adjacent data lines can give rise to visual artifacts in the data lines' corresponding sub-pixels. Various embodiments of the present disclosure serve to prevent or reduce these visual artifacts by applying voltage to a data line more than once during the write sequence. Doing so can allow erroneous brightening or darkening caused by large voltage swings to be overwritten without causing additional large voltage swings on the data line.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Applicant: APPLE INC.
    Inventors: Steven Porter Hotelling, Marduke Yousefpor, Hopil Bae
  • Publication number: 20120299892
    Abstract: Displaying an image on a display screen is provided by periodically changing the scanning order in which rows of sub-pixels of the display screen are scanned. One scanning order can be selected to scan the rows in the update of a first image frame of the display, and then a different scanning order can be selected to scan the rows in the update of a second image frame. Particular scanning orders can be selected in order to reduce or eliminate the appearance of visual artifacts by changing the location of the visual artifacts across multiple image frames. For example, different scanning orders that result in visual artifacts at different positions on the display screen can be used, and the selection of scanning order can periodically change among the different scanning orders such that the position of the visual artifacts changes periodically during the updating of multiple image frames.
    Type: Application
    Filed: May 24, 2011
    Publication date: November 29, 2012
    Applicant: Apple Inc.
    Inventors: Steven Porter Hotelling, Marduke Yousefpor, Hopil Bae
  • Publication number: 20120262406
    Abstract: Displays with touch sensing circuitry integrated into the display pixel stackup are provided. An integrated touch screen can include multi-function circuit elements that can operate as circuitry of the display system to generate an image on the display, and can also form part of a touch sensing system that senses one or more touches on or near the display. The multi-function circuit elements can be, for example, capacitors in display pixels that can be configured to operate as storage capacitors/electrodes, common electrodes, conductive wires/pathways, etc., of the display circuitry in the display system, and that may also be configured to operate as circuit elements of the touch sensing circuitry.
    Type: Application
    Filed: June 19, 2012
    Publication date: October 18, 2012
    Inventors: Steven Porter HOTELLING, Marduke YOUSEFPOR, Shih Chang CHANG, John Z. ZHONG
  • Publication number: 20120211148
    Abstract: A method of laminating a surface of a flexible material to a surface of a rigid, curved material. The method includes pressing an area of the surface of the flexible material into the surface of the rigid, curved material with a holder to create a contact area while the flexible material is conformed to the holder, which has a curvature greater than a curvature of the rigid, curved material surface; and changing the contact area between the surface of the flexible material and the surface of the rigid, curved material while maintaining pressure on the contact area until the surface of the flexible material and the surface of the rigid curved material are laminated.
    Type: Application
    Filed: May 1, 2012
    Publication date: August 23, 2012
    Inventors: Kuo-Hua SUNG, Troy Edwards, Casey Feinstein, John Zhong, Steven Porter Hotelling, Andrew David Lauder
  • Patent number: 8217913
    Abstract: Displays with touch sensing circuitry integrated into the display pixel stackup are provided. Circuit elements, such as touch signal lines, such as drive lines and sense lines, grounding regions, in the display pixel stackups can be grouped together to form touch sensing circuitry that senses a touch on or near the display. An integrated touch screen can include multi-function circuit elements that can operate as circuitry of the display system to generate an image on the display, and can also form part of a touch sensing system that senses one or more touches on or near the display. The multi-function circuit elements can be, for example, capacitors in display pixels that can be configured to operate as storage capacitors/electrodes, common electrodes, conductive wires/pathways, etc., of the display circuitry in the display system, and that may also be configured to operate as circuit elements of the touch sensing circuitry.
    Type: Grant
    Filed: August 21, 2009
    Date of Patent: July 10, 2012
    Assignee: Apple Inc.
    Inventors: Steven Porter Hotelling, Marduke Yousefpor, Shih Chang Chang, John Z. Zhong
  • Patent number: 8196636
    Abstract: A method of laminating a surface of a flexible material to a surface of a rigid, curved material. The method includes pressing an area of the surface of the flexible material into the surface of the rigid, curved material with a holder to create a contact area while the flexible material is conformed to the holder, which has a curvature greater than a curvature of the rigid, curved material surface; and changing the contact area between the surface of the flexible material and the surface of the rigid, curved material while maintaining pressure on the contact area until the surface of the flexible material and the surface of the rigid curved material are laminated.
    Type: Grant
    Filed: July 23, 2010
    Date of Patent: June 12, 2012
    Assignee: Apple Inc.
    Inventors: Kuo-Hua Sung, Troy J. Edwards, Casey J. Feinstein, John Z. Zhong, Steven Porter Hotelling, Andrew David Lauder
  • Publication number: 20120139865
    Abstract: A system for data communication between a plurality of touch devices is disclosed. The system can include a first touch device having a first touch surface, and at least one other touch device having at least one other touch surface. The first touch device and the at least one other touch device can include a touch controller detecting communications coupling between the first touch surface and the least one other touch surface. The first touch device and the at least one other touch device can include a communication unit communicating data between the first touch device and the at least one other touch device, via the first touch surface and the at least one other touch surface, when the communications coupling is detected. The communications coupling can be detected when a coupling conduit contacts, or is proximate to, the first touch surface and at least one other touch surface.
    Type: Application
    Filed: December 3, 2010
    Publication date: June 7, 2012
    Inventors: Christoph Horst KRAH, Steven Porter HOTELLING
  • Publication number: 20120113064
    Abstract: A touch sensitive device having circuitry to compensate for crosstalk from the device display to the device touch sensor panel is disclosed. The crosstalk compensation circuitry can include a downsampler and a crosstalk compensator. The downsampler can downsample a display image to a manageable size for transmission and processing and can then send the downsampled image to the crosstalk compensator so as to provide information about the display operation that can be used to estimate the expected amount of crosstalk caused by the display. The crosstalk compensator can estimate the amount of crosstalk based on the downsampled image and can then compensate a touch image captured by the touch sensor panel for the estimated amount, the touch image being indicative of a touch or hover event at the panel.
    Type: Application
    Filed: November 5, 2010
    Publication date: May 10, 2012
    Inventors: Kevin J. WHITE, Marduke Yousefpor, Christoph Horst Krah, Steven Porter Hotelling
  • Publication number: 20120081335
    Abstract: Negative pixel compensation to compensate for a negative pixel effect in touch signal outputs due to poor grounding of an object touching the device is disclosed. To do so, the device can switch to a configuration to measure the grounding condition of the touching object and use the measurement to compensate the touch output values. In the switched configuration, a first set of lines of the device can be switched between a coupling to a stimulation signal input to drive the device, a coupling to a capacitance signal output to output a signal indicative of the object's grounding condition, and a coupling to ground. A second set of lines of the device can be coupled to a touch signal output to output a signal indicative of the object's touch at the device. The grounding signal can be applied to the touch signal to compensate for the negative pixel effect.
    Type: Application
    Filed: September 30, 2011
    Publication date: April 5, 2012
    Inventors: Brian Richards Land, Marduke Yousefpor, Steven Porter Hotelling