Patents by Inventor Steven Akin Dunwoody

Steven Akin Dunwoody has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11952305
    Abstract: In some embodiments, a method for processing an optical fiber includes: drawing an optical fiber through a draw furnace, conveying the optical fiber through a flame reheating device downstream from the draw furnace, wherein the flame reheating device comprises one or more burners each comprising: a body having a top surface and an opposing bottom surface, an opening within the body extending from the top surface through the body to the bottom surface, wherein the optical fiber passes through the opening, and one or more gas outlets within the body; and igniting a flammable gas provided by the one or more gas outlets to form a flame encircling the optical fiber passing through the opening, wherein the flame heats the optical fiber by at least 100 degrees Celsius at a heating rate exceeding 10,000 degrees Celsius/second.
    Type: Grant
    Filed: September 30, 2021
    Date of Patent: April 9, 2024
    Assignee: CORNING INCORPORATED
    Inventors: Ravindra Kumar Akarapu, Joel Patrick Carberry, David Alan Deneka, Steven Akin Dunwoody, Kenneth Edward Hrdina, John Michael Jewell, Yuanjie Jiang, Nikolaos Pantelis Kladias, Ming-Jun Li, Barada Kanta Nayak, Dale Robert Powers, Chunfeng Zhou, Vincent Matteo Tagliamonti, Christopher Scott Thomas
  • Patent number: 11554979
    Abstract: A system for processing optical fiber includes a draw furnace, a fiber conveyance pathway extending between an upstream end positioned at the draw furnace and a downstream end positioned opposite the upstream end, where optical fiber is conveyed along the fiber conveyance pathway from the upstream end to the downstream end in a fiber conveyance direction, a muffle in communication with the draw furnace and positioned downstream of the draw furnace, a second cooling device annularly surrounding the fiber conveyance pathway downstream from the draw furnace, the second cooling device including one or more second cooling device heating elements and a first cooling device positioned between the draw furnace and the second cooling device, wherein the first cooling device directs a fluid to contact the optical fiber.
    Type: Grant
    Filed: December 3, 2020
    Date of Patent: January 17, 2023
    Assignee: Corning Incorporated
    Inventors: Steven Akin Dunwoody, Nikolaos Pantelis Kladias, Robert Clark Moore, Jason Roy Pace, Christopher Scott Thomas, Bryan William Wakefield, Chunfeng Zhou
  • Publication number: 20220098085
    Abstract: In some embodiments, a method for processing an optical fiber includes: drawing an optical fiber through a draw furnace, conveying the optical fiber through a flame reheating device downstream from the draw furnace, wherein the flame reheating device comprises one or more burners each comprising: a body having a top surface and an opposing bottom surface, an opening within the body extending from the top surface through the body to the bottom surface, wherein the optical fiber passes through the opening, and one or more gas outlets within the body; and igniting a flammable gas provided by the one or more gas outlets to form a flame encircling the optical fiber passing through the opening, wherein the flame heats the optical fiber by at least 100 degrees Celsius at a heating rate exceeding 10,000 degrees Celsius/second.
    Type: Application
    Filed: September 30, 2021
    Publication date: March 31, 2022
    Inventors: Ravindra Kumar Akarapu, Joel Patrick Carberry, David Alan Deneka, Steven Akin Dunwoody, Kenneth Edward Hrdina, John Michael Jewell, Yuanjie Jiang, Nikolaos Pantelis Kladias, Ming-Jun Li, Barada Kanta Nayak, Dale Robert Powers, Chunfeng Zhou, Vincent Matteo Tagliamonti, Christopher Scott Thomas
  • Publication number: 20210269352
    Abstract: Optical fibers having low fictive temperature and methods of making such fibers are described. Management of the cooling rate of an optical fiber during fiber draw permits control over the fictive temperature of the fiber. Non-monotonic cooling rates are shown to promote reductions in fiber fictive temperature. The non-monotonic cooling includes slower cooling rates in upstream portions of the process pathway and faster cooling rates in downstream portions of the process pathway. Reduction in fiber fictive temperature is achieved by controlling the ambient temperature of the fiber to slow the cooling rate of the fiber in upstream portions of the process pathway that correspond to the fiber temperature regime in which the fiber viscosity is sufficiently low to permit efficient structural relaxation. Increases in cooling rate in downstream portions of the process pathway permit adjustment of fiber temperature as needed to meet entrance temperature requirements of downstream processing units.
    Type: Application
    Filed: February 23, 2021
    Publication date: September 2, 2021
    Inventors: Steven Akin Dunwoody, Robert Clark Moore, Pushkar Tandon
  • Publication number: 20210179477
    Abstract: A system for processing optical fiber includes a draw furnace, a fiber conveyance pathway extending between an upstream end positioned at the draw furnace and a downstream end positioned opposite the upstream end, where optical fiber is conveyed along the fiber conveyance pathway from the upstream end to the downstream end in a fiber conveyance direction, a muffle in communication with the draw furnace and positioned downstream of the draw furnace, a second cooling device annularly surrounding the fiber conveyance pathway downstream from the draw furnace, the second cooling device including one or more second cooling device heating elements and a first cooling device positioned between the draw furnace and the second cooling device, wherein the first cooling device directs a fluid to contact the optical fiber.
    Type: Application
    Filed: December 3, 2020
    Publication date: June 17, 2021
    Inventors: Steven Akin Dunwoody, Nikolaos Pantelis Kladias, Robert Clark Moore, Jason Roy Pace, Christopher Scott Thomas, Bryan William Wakefield, Chunfeng Zhou
  • Patent number: 10961145
    Abstract: Optical fibers having low fictive temperature and methods of making such fibers are described. Management of the cooling rate of an optical fiber during fiber draw permits control over the fictive temperature of the fiber. Non-monotonic cooling rates are shown to promote reductions in fiber fictive temperature. The non-monotonic cooling includes slower cooling rates in upstream portions of the process pathway and faster cooling rates in downstream portions of the process pathway. Reduction in fiber fictive temperature is achieved by controlling the ambient temperature of the fiber to slow the cooling rate of the fiber in upstream portions of the process pathway that correspond to the fiber temperature regime in which the fiber viscosity is sufficiently low to permit efficient structural relaxation. Increases in cooling rate in downstream portions of the process pathway permit adjustment of fiber temperature as needed to meet entrance temperature requirements of downstream processing units.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: March 30, 2021
    Assignee: Corning Incorporated
    Inventors: Steven Akin Dunwoody, Robert Clark Moore, Pushkar Tandon
  • Patent number: 10479720
    Abstract: A method of making optical fibers that includes controlled cooling to produce fibers having a low concentration of non-bridging oxygen defects and low sensitivity to hydrogen. The method may include heating a fiber preform above its softening point, drawing a fiber from the heated preform and passing the fiber through two treatment stages. The fiber may enter the first treatment stage at a temperature between 1500° C. and 1700° C., may exit the first treatment stage at a temperature between 1200° C. and 1400° C., and may experience a cooling rate less than 5000° C./s in the first treatment stage. The fiber may enter the second treatment stage downstream from the first treatment stage at a temperature between 1200° C. and 1400° C., may exit the second treatment stage at a temperature between 1000° C. and 1150° C., and may experience a cooling rate between 5000° C./s and 12,000° C./s in the second treatment stage.
    Type: Grant
    Filed: July 23, 2014
    Date of Patent: November 19, 2019
    Assignee: Corning Incorporated
    Inventors: Steven Akin Dunwoody, Robert Clark Moore, Pushkar Tandon
  • Publication number: 20180093915
    Abstract: Optical fibers having low fictive temperature and methods of making such fibers are described. Management of the cooling rate of an optical fiber during fiber draw permits control over the fictive temperature of the fiber. Non-monotonic cooling rates are shown to promote reductions in fiber fictive temperature. The non-monotonic cooling includes slower cooling rates in upstream portions of the process pathway and faster cooling rates in downstream portions of the process pathway. Reduction in fiber fictive temperature is achieved by controlling the ambient temperature of the fiber to slow the cooling rate of the fiber in upstream portions of the process pathway that correspond to the fiber temperature regime in which the fiber viscosity is sufficiently low to permit efficient structural relaxation. Increases in cooling rate in downstream portions of the process pathway permit adjustment of fiber temperature as needed to meet entrance temperature requirements of downstream processing units.
    Type: Application
    Filed: September 20, 2017
    Publication date: April 5, 2018
    Inventors: Steven Akin Dunwoody, Robert Clark Moore, Pushkar Tandon
  • Patent number: 9309143
    Abstract: A method of making optical fibers that includes controlled cooling to produce fibers having a low concentration of non-bridging oxygen defects and low sensitivity to hydrogen. The method may include heating a fiber preform above its softening point, drawing a fiber from the heated preform and passing the fiber through two treatment stages. The fiber may enter the first treatment stage at a temperature between 1500° C. and 1700° C., may exit the first treatment stage at a temperature between 1200° C. and 1400° C., and may experience a cooling rate less than 5000° C./s in the first treatment stage. The fiber may enter the second treatment stage downstream from the first treatment stage at a temperature between 1200° C. and 1400° C., may exit the second treatment stage at a temperature between 1000° C. and 1150° C., and may experience a cooling rate between 5000° C./s and 12,000° C./s in the second treatment stage.
    Type: Grant
    Filed: July 22, 2014
    Date of Patent: April 12, 2016
    Assignee: Corning Incorporated
    Inventors: Steven Akin Dunwoody, Robert Clark Moore, Pushkar Tandon
  • Publication number: 20150315062
    Abstract: A method of making optical fibers that includes controlled cooling to produce fibers having a low concentration of non-bridging oxygen defects and low sensitivity to hydrogen. The method may include heating a fiber preform above its softening point, drawing a fiber from the heated preform and passing the fiber through two treatment stages. The fiber may enter the first treatment stage at a temperature between 1500° C. and 1700° C., may exit the first treatment stage at a temperature between 1200° C. and 1400° C., and may experience a cooling rate less than 5000° C./s in the first treatment stage. The fiber may enter the second treatment stage downstream from the first treatment stage at a temperature between 1200° C. and 1400° C., may exit the second treatment stage at a temperature between 1000° C. and 1150° C., and may experience a cooling rate between 5000° C./s and 12,000° C./s in the second treatment stage.
    Type: Application
    Filed: July 22, 2014
    Publication date: November 5, 2015
    Inventors: Steven Akin Dunwoody, Robert Clark Moore, Pushkar Tandon
  • Publication number: 20150040614
    Abstract: A method of making optical fibers that includes controlled cooling to produce fibers having a low concentration of non-bridging oxygen defects and low sensitivity to hydrogen. The method may include heating a fiber preform above its softening point, drawing a fiber from the heated preform and passing the fiber through two treatment stages. The fiber may enter the first treatment stage at a temperature between 1500° C. and 1700° C., may exit the first treatment stage at a temperature between 1200° C. and 1400° C., and may experience a cooling rate less than 5000° C./s in the first treatment stage. The fiber may enter the second treatment stage downstream from the first treatment stage at a temperature between 1200° C. and 1400° C., may exit the second treatment stage at a temperature between 1000° C. and 1150° C., and may experience a cooling rate between 5000° C./s and 12,000° C./s in the second treatment stage.
    Type: Application
    Filed: July 23, 2014
    Publication date: February 12, 2015
    Inventors: Steven Akin Dunwoody, Robert Clark Moore, Pushkar Tandon
  • Patent number: 8317972
    Abstract: A method for removing a protective coating material from a portion of an optical fiber including a glass optical fiber having an outer surface surrounded by said protective coating material, said method comprising the steps of: (i) providing a fiber collection and support device having: (a) a coarse conical fiber collector having an input port and (b) a fine fiber centering collector including a fiber tube having an output port, said input port is larger then said output port; (ii) providing the fiber threaded through the course conical collector into the fiber collection tube of the fine fiber centering collector; (iii) contacting the fiber, as it exits from the output port of the fiber collection tube of the fiber collection and support device, with a stream of hot gas; and (iv) directing a stream of a hot gas onto the protective coating material that is to be removed.
    Type: Grant
    Filed: November 6, 2007
    Date of Patent: November 27, 2012
    Assignee: Corning Incorporated
    Inventors: Steven Akin Dunwoody, Oscar Palmer
  • Publication number: 20080128084
    Abstract: A method for removing a protective coating material from a portion of an optical fiber, said optical fiber including a glass optical fiber having an outer surface surrounded by said protective coating material, said method comprising the steps of: (i) providing a fiber collection and support device having: (a) a coarse conical fiber collector having an input port and (b) a fine fiber centering collector including a fiber tube having an output port, wherein said input port is larger then said output port; (ii) threading the fiber through the course conical collector and providing the fiber from the course conical collector into the fiber collection tube of the fine fiber centering collector; (iii) contacting the fiber, as it exits from the output port of the fiber collection tube of the fiber collection and support device, with a stream of hot gas; and (iv) directing a stream of a hot gas onto the protective coating material that is to be removed, the temperature of said hot gas being sufficiently high to soft
    Type: Application
    Filed: November 6, 2007
    Publication date: June 5, 2008
    Inventors: Steven Akin Dunwoody, Oscar Palmer