Patents by Inventor Steven Andrew Kellner
Steven Andrew Kellner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 11648969Abstract: A vehicle communication system includes a wireless communication device and a controller that controls operation of the wireless communication device. The controller directs the wireless communication device to switch between operating in an off-board communication mode and operating in an onboard communication mode. The wireless communication device communicates a remote data signal with an off-board location while the wireless communication device is operating in the off-board communication mode and the wireless communication device communicates a local data signal between vehicles of the vehicle system while the wireless communication device is operating in the onboard communication mode.Type: GrantFiled: March 15, 2021Date of Patent: May 16, 2023Assignee: Transportation IP Holdings, LLCInventors: Jared Klineman Cooper, Robert James Foy, David Michael Peltz, Eugene Smith, Steven Andrew Kellner, Brian William Schroeck, Keith Gilbertson, Joseph Forrest Noffsinger, Wolfgang Daum
-
Publication number: 20220266876Abstract: A system and method includes a first control system having one or more processors onboard a lead vehicle of a vehicle system that includes the lead vehicle and a remote vehicle. The second control system automatically restricts movement of the vehicle system based on a location of the vehicle system. The processors detect a signal instance of an operator actuating an input device, and communicate a vehicle information request message to the second control system. The second control system communicates a list of vehicle identifiers, that includes a vehicle identifier associated with the remote vehicle, to the processors. The processors communicate a wireless linking message, including a request to establish a communication link, to the remote vehicle based on the vehicle identifier associated with the remote vehicle.Type: ApplicationFiled: May 13, 2022Publication date: August 25, 2022Inventors: Jared Klineman Cooper, Brian Joseph McManus, Frank Wawrzyniak, Ralph C. Haddock, III, Robert James Foy, James Glen Corry, Mark Bradshaw Kraeling, Todd William Goodermuth, Eugene Smith, Steven Andrew Kellner, Joseph Mario Nazareth, Brian William Schroeck, David Michael Peltz, Jeffrey Donald Kernwein, Daniel J. Rush, David Allen Eldredge
-
Patent number: 11345378Abstract: A vehicle control system includes a controller that communicates between a first vehicle and a second vehicle and/or a monitoring device in a vehicle system. The controller determines a communication loss and, responsive to determining the communication loss, switches to communicating via a different communication path. The controller also determines an operational restriction on movement of the vehicle system based on the communication loss that is determined, obtains a transitional plan that designates operational settings of the vehicle system at one or more different locations along a route being traveled by the vehicle system, different distances along the route being traveled by the vehicle system, and/or different times. The controller automatically changes the movement of the vehicle system according to the operational settings designated by the transitional plan to reduce the movement of the vehicle system to or below the operational restriction.Type: GrantFiled: December 18, 2019Date of Patent: May 31, 2022Assignee: Transportation IP Holdings, LLCInventors: Scott William Dulmage, Brian Douglas Lawry, Wolfgang Daum, Mark Bradshaw Kraeling, Eugene Smith, Glen Paul Peltonen, Steven Andrew Kellner, Joseph Forrest Noffsinger, Robert Thomas Oliveira, Jared Klineman Cooper
-
Patent number: 11332167Abstract: A system includes one or more processors, a communication device, and a positive train control (PTC) system. The one or more processors and communication device are onboard a lead vehicle of a vehicle system that includes the lead vehicle and a first remote vehicle. The PTC system is configured to restrict movement of the vehicle system based on a location of the vehicle system. The PTC system communicates a list of vehicle identifiers to the one or more processors. The communication device communicates a wireless linking message, which includes a vehicle identifier associated with the first remote vehicle, to the first remote vehicle. The communication device establishes a communication link between the lead vehicle and the first remote vehicle responsive to receipt of the wireless linking message at the first remote vehicle. The one or more processors remotely control movement of the first remote vehicle via the communication link.Type: GrantFiled: May 28, 2019Date of Patent: May 17, 2022Assignee: TRANSPORTATION IP HOLDINGS, LLCInventors: Jared Klineman Cooper, Brian Joseph McManus, Frank Wawrzyniak, Ralph C. Haddock, III, Robert James Foy, James Glen Corry, Mark Bradshaw Kraeling, Todd William Goodermuth, Eugene Smith, Steven Andrew Kellner, Joseph Mario Nazareth, Brian William Schroeck, David Michael Peltz, Jeffrey Donald Kernwein, Daniel J. Rush, David Allen Eldredge
-
Publication number: 20210206408Abstract: A vehicle communication system includes a wireless communication device and a controller that controls operation of the wireless communication device. The controller directs the wireless communication device to switch between operating in an off-board communication mode and operating in an onboard communication mode. The wireless communication device communicates a remote data signal with an off-board location while the wireless communication device is operating in the off-board communication mode and the wireless communication device communicates a local data signal between vehicles of the vehicle system while the wireless communication device is operating in the onboard communication mode.Type: ApplicationFiled: March 15, 2021Publication date: July 8, 2021Inventors: Jared Klineman Cooper, Robert James Foy, David Michael Peltz, Eugene Smith, Steven Andrew Kellner, Brian William Schroeck, Keith Gilbertson, Joseph Forrest Noffsinger, Wolfgang Daum
-
Patent number: 10967893Abstract: A locomotive communication system includes a wireless communication device and a controller that controls operation of the wireless communication device. The controller directs the wireless communication device to switch between operating in an off-board communication mode and operating in an onboard communication mode. The wireless communication device communicates a remote data signal with an off-board location while the wireless communication device is operating in the off-board communication mode and the wireless communication device communicates a local data signal between the propulsion-generating vehicles of the vehicle system while the wireless communication device is operating in the onboard communication mode.Type: GrantFiled: November 6, 2018Date of Patent: April 6, 2021Assignee: TRANSPORTATION IP HOLDINGS, LLCInventors: Jared Klineman Cooper, Robert James Foy, David Michael Peltz, Eugene Smith, Steven Andrew Kellner, Brian William Schroeck, Keith Gilbertson, Joseph Forrest Noffsinger, Wolfgang Daum
-
Publication number: 20200122758Abstract: A vehicle control system includes a controller that communicates between a first vehicle and a second vehicle and/or a monitoring device in a vehicle system. The controller determines a communication loss and, responsive to determining the communication loss, switches to communicating via a different communication path. The controller also determines an operational restriction on movement of the vehicle system based on the communication loss that is determined, obtains a transitional plan that designates operational settings of the vehicle system at one or more different locations along a route being traveled by the vehicle system, different distances along the route being traveled by the vehicle system, and/or different times. The controller automatically changes the movement of the vehicle system according to the operational settings designated by the transitional plan to reduce the movement of the vehicle system to or below the operational restriction.Type: ApplicationFiled: December 18, 2019Publication date: April 23, 2020Inventors: Scott William Dulmage, Brian Douglas Lawry, Wolfgang Daum, Mark Bradshaw Kraeling, Eugene Smith, Glen Paul Peltonen, Steven Andrew Kellner, Joseph Forrest Noffsinger, Robert Thomas Oliveira, Jared Klineman Cooper
-
Patent number: 10597052Abstract: A vehicle control system includes a controller that communicates between a first vehicle and a second vehicle and/or a monitoring device in a vehicle system. The controller determines a communication loss and, responsive to determining the communication loss, switches to communicating via a different communication path. The controller also determines an operational restriction on movement of the vehicle system based on the communication loss that is determined, obtains a transitional plan that designates operational settings of the vehicle system at one or more different locations along a route being traveled by the vehicle system, different distances along the route being traveled by the vehicle system, and/or different times. The controller automatically changes the movement of the vehicle system according to the operational settings designated by the transitional plan to reduce the movement of the vehicle system to or below the operational restriction.Type: GrantFiled: May 20, 2019Date of Patent: March 24, 2020Assignee: GE GLOBAL SOURCING LLCInventors: Scott William Dulmage, Brian Douglas Lawry, Wolfgang Daum, Mark Bradshaw Kraeling, Eugene Smith, Glen Paul Peltonen, Steven Andrew Kellner, Joseph Forrest Noffsinger, Robert Thomas Oliveira, Jared Klineman Cooper
-
Patent number: 10486720Abstract: A vehicle control system includes a controller that communicates between a first vehicle and a second vehicle and/or a monitoring device in a vehicle system. The controller determines a communication loss and, responsive to determining the communication loss, switches to communicating via a different communication path. The controller also determines an operational restriction on movement of the vehicle system based on the communication loss that is determined, obtains a transitional plan that designates operational settings of the vehicle system at one or more different locations along a route being traveled by the vehicle system, different distances along the route being traveled by the vehicle system, and/or different times. The controller automatically changes the movement of the vehicle system according to the operational settings designated by the transitional plan to reduce the movement of the vehicle system to or below the operational restriction.Type: GrantFiled: August 15, 2016Date of Patent: November 26, 2019Assignee: GE GLOBAL SOURCING LLCInventors: Scott William Dulmage, Robert Thomas Oliveira, Jared Klineman Cooper, Wolfgang Daum, Mark Bradshaw Kraeling, Brian Lawry, Joseph Forrest Noffsinger, Steven Andrew Kellner, Eugene Smith, Glen Paul Peltonen
-
Publication number: 20190308647Abstract: A vehicle control system includes a controller that communicates between a first vehicle and a second vehicle and/or a monitoring device in a vehicle system. The controller determines a communication loss and, responsive to determining the communication loss, switches to communicating via a different communication path. The controller also determines an operational restriction on movement of the vehicle system based on the communication loss that is determined, obtains a transitional plan that designates operational settings of the vehicle system at one or more different locations along a route being traveled by the vehicle system, different distances along the route being traveled by the vehicle system, and/or different times. The controller automatically changes the movement of the vehicle system according to the operational settings designated by the transitional plan to reduce the movement of the vehicle system to or below the operational restriction.Type: ApplicationFiled: May 20, 2019Publication date: October 10, 2019Inventors: Scott William Dulmage, Brian Douglas Lawry, Wolfgang Daum, Mark Bradshaw Kraeling, Eugene Smith, Glen Paul Peltonen, Steven Andrew Kellner, Joseph Forrest Noffsinger, Robert Thomas Oliveira, Jared Klineman Cooper
-
Publication number: 20190276055Abstract: A system includes one or more processors, a communication device, and a positive train control (PTC) system. The one or more processors and communication device are onboard a lead vehicle of a vehicle system that includes the lead vehicle and a first remote vehicle. The PTC system is configured to restrict movement of the vehicle system based on a location of the vehicle system. The PTC system communicates a list of vehicle identifiers to the one or more processors. The communication device communicates a wireless linking message, which includes a vehicle identifier associated with the first remote vehicle, to the first remote vehicle. The communication device establishes a communication link between the lead vehicle and the first remote vehicle responsive to receipt of the wireless linking message at the first remote vehicle. The one or more processors remotely control movement of the first remote vehicle via the communication link.Type: ApplicationFiled: May 28, 2019Publication date: September 12, 2019Inventors: Jared Klineman Cooper, Brian Joseph McManus, Frank Wawrzyniak, Ralph C. Haddock, III, Robert James Foy, James Glen Corry, Mark Bradshaw Kraeling, Todd William Goodermuth, Eugene Smith, Steven Andrew Kellner, Joseph Mario Nazareth, Brian William Schroeck, David Michael Peltz, Jeffrey Donald Kernwein, Daniel J. Rush, David Allen Eldredge
-
Publication number: 20190263430Abstract: A system and method includes determining, with a sensor assembly disposed onboard a first aerial vehicle, a direction in which a fluid flows within or through the first aerial vehicle, and determining an orientation of the first aerial vehicle relative to a second aerial vehicle based at least in part on the direction in which the fluid flows within or through the first aerial vehicle.Type: ApplicationFiled: May 14, 2019Publication date: August 29, 2019Inventors: Eugene Smith, Ajith Kuttannair Kumar, Wolfgang Daum, Martin Paget, Daniel Rush, Sameh Fahmy, Brad Thomas Costa, Seneca Snyder, Jerry Duncan, Mark Bradshaw Kraeling, Michael Scott Miner, Shannon Joseph Clouse, Anwarul Azam, Matthew Lawrence Blair, Nidhi Naithani, Dattaraj Jagdish Rao, Anju Bind, Sreyashi Dey Chaki, Scott Daniel Nelson, Nikhil Uday Naphade, Wing Yeung Chung, Daniel Malachi Ballesty, Glenn Robert Shaffer, Jeffret James Kisak, Dale Martin DiDomenico, Suresh Govindappa, Manibabu Pippalla, Sethu Madhavan, Jared Klineman Cooper, Huan Tan, John Michael Lizzi, Charles Burton Theurer, Balajee Kannan, Romano Patrick, Brad Thomas Costa, James D. Brooks, Micahel Scott Miner, Harry Kirk Matthews, JR., Bradford Wayne Miller, Neeraja Subrahmaniyan, Brian Joseph McManus, Frank Wawrzyniak, Ralph C. Haddock, III, Robert James Foy, James Glen Corry, Steven Andrew Kellner, Joseph Mario Nazareth, Brian William Schroeck, Shawn Arthur McClintic
-
Patent number: 10331121Abstract: A communication system and method for communicatively linking vehicles in a vehicle consist determine a vehicle identifier for a first remote vehicle included in a vehicle consist formed from a lead vehicle and at least the first remote vehicle. The system and method communicate a wireless linking message addressed to the vehicle identifier from the lead vehicle to the first remote vehicle, and establish a communication link between the lead vehicle and the first remote vehicle responsive to receipt of the wireless linking message at the first remote vehicle. The communication link is established such that movement of the first remote vehicle is remotely controlled from the lead vehicle via the communication link. The communication link is established without an operator entering the first remote vehicle.Type: GrantFiled: December 13, 2016Date of Patent: June 25, 2019Assignee: GE GLOBAL SOURCING LLCInventors: Jared Klineman Cooper, Brian Joseph McManus, Frank Wawrzyniak, Ralph C. Haddock, III, Robert James Foy, James Glen Corry, Mark Bradshaw Kraeling, Todd William Goodermuth, Eugene Smith, Steven Andrew Kellner, Joseph Mario Nazareth, Brian William Schroeck, David Michael Peltz
-
Patent number: 10144440Abstract: A communication system includes a first wireless communication device disposed onboard a vehicle system having two or more propulsion-generating vehicles that are mechanically interconnected with each other. The communication system also includes a controller configured to be disposed onboard the vehicle system and operatively connected with the first wireless communication device in order to control operations of the device. The controller is configured to direct the first wireless communication device to switch between operating in an off-board communication mode and an onboard communication mode. When the first wireless communication device is operating in the off-board communication mode, the device is configured to receive remote data signals from a location that is disposed off-board of the vehicle system.Type: GrantFiled: February 28, 2014Date of Patent: December 4, 2018Assignee: General Electric CompanyInventors: Jared Klineman Cooper, Robert James Foy, David Michael Peltz, Eugene Smith, Steven Andrew Kellner, Brian William Schroeck, Keith Gilbertson, Joseph Forrest Noffsinger, Wolfgang Daum
-
Patent number: 10034119Abstract: Communication methods and systems wirelessly communicate onboard messages between communication devices onboard the same vehicle. The communication devices can wirelessly communicate with other communication devices onboard other vehicles in a vehicle system for remote control of the vehicles. Receipt of the onboard messages at the communication devices is determined, and operative states of the communication devices are determined based at least in part on the receipt of the onboard messages at the communication devices. Determining these operative states in this manner can allow for an operator to identify communication faults with the communication devices prior to departing the vehicle.Type: GrantFiled: November 10, 2014Date of Patent: July 24, 2018Assignee: General Electric CompanyInventors: Steven Andrew Kellner, Robert James Foy, Robert Carmen Palanti, Brian William Schroeck, Paul Aaron Connolly
-
Patent number: 9862392Abstract: A communication system and method receive, at an energy management system disposed onboard a vehicle system formed from a lead vehicle and one or more remote vehicles, trip data that represents one or more characteristics of an upcoming trip of the vehicle system along a route. A selected portion of the trip data is communicated from the energy management system to a distributed power system also disposed onboard the vehicle system. The selected portion includes identifying information and one or more orientations of the one or more remote vehicles. Using the distributed power system, communication links between the lead vehicle and the one or more remote vehicles are established using the identifying information and the one or more orientations.Type: GrantFiled: October 13, 2015Date of Patent: January 9, 2018Assignee: General Electric CompanyInventors: Scott Alan Schoenly, Steven Andrew Kellner, Robert James Foy, David Michael Peltz, Eugene Smith, James Glen Corry, Joseph Mario Nazareth, Brian William Schroeck
-
Patent number: 9718452Abstract: A brake monitoring system and method determine one or more characteristics of a conduit in a first air brake system of a first vehicle system, compare the one or more characteristics of the first air brake system with one or more designated waveform signatures, and distinguish between communication of a brake application signal that is propagated along the vehicle system through the conduit as a decrease in pressure in the conduit and a change in the pressure in the conduit that is not representative of the communication of the brake application signal based on comparing the one or more characteristics with the one or more designated waveform signatures.Type: GrantFiled: March 11, 2015Date of Patent: August 1, 2017Assignee: General Electric CompanyInventors: Steven Andrew Kellner, David Michael Peltz, Eugene Smith
-
Publication number: 20170090473Abstract: A communication system and method for communicatively linking vehicles in a vehicle consist determine a vehicle identifier for a first remote vehicle included in a vehicle consist formed from a lead vehicle and at least the first remote vehicle. The system and method communicate a wireless linking message addressed to the vehicle identifier from the lead vehicle to the first remote vehicle, and establish a communication link between the lead vehicle and the first remote vehicle responsive to receipt of the wireless linking message at the first remote vehicle. The communication link is established such that movement of the first remote vehicle is remotely controlled from the lead vehicle via the communication link. The communication link is established without an operator entering the first remote vehicle.Type: ApplicationFiled: December 13, 2016Publication date: March 30, 2017Inventors: Jared Klineman Cooper, Brian Joseph McManus, Frank Wawrzyniak, Ralph C. Haddock, III, Robert James Foy, James Glenn Corry, Mark Bradshaw Kraeling, Todd William Goodermuth, Eugene Smith, Steven Andrew Kellner, Joseph Mario Nazareth, Brian William Schroeck, David Michael Peltz
-
Publication number: 20160355198Abstract: A vehicle control system includes a controller that communicates between a first vehicle and a second vehicle and/or a monitoring device in a vehicle system. The controller determines a communication loss and, responsive to determining the communication loss, switches to communicating via a different communication path. The controller also determines an operational restriction on movement of the vehicle system based on the communication loss that is determined, obtains a transitional plan that designates operational settings of the vehicle system at one or more different locations along a route being traveled by the vehicle system, different distances along the route being traveled by the vehicle system, and/or different times. The controller automatically changes the movement of the vehicle system according to the operational settings designated by the transitional plan to reduce the movement of the vehicle system to or below the operational restriction.Type: ApplicationFiled: August 15, 2016Publication date: December 8, 2016Inventors: Scott William Dulmage, Robert Thomas Oliveira, Jared Klineman Cooper, Wolfgang Daum, Mark Bradshaw Kraeling, Brian Lawry, Joseph Forrest Noffsinger, Steven Andrew Kellner, Eugene Smith, Glen Paul Peltonen
-
Patent number: 9513630Abstract: A wireless communication device of a vehicle system includes one or more antennas configured to be disposed onboard a first vehicle of the vehicle system, a first modem configured to be disposed onboard the first vehicle and to communicate a first wireless signal to one or more of a second vehicle of the vehicle system or an off-board device using the one or more antennas, and a second modem configured to be disposed onboard the first vehicle and to communicate a second wireless signal to the one or more of the second vehicle or the off-board device using the one or more antennas. The first modem is configured to communicate the first wireless signal via a first type of wireless communication link and the second modem is configured to communicate the second wireless signal via a different, second type of wireless communication link.Type: GrantFiled: September 9, 2015Date of Patent: December 6, 2016Assignee: General Electric CompanyInventors: Santhanakrishnan Rajendran, Praful Babuji Vihol, Dibyajyoti Pati, Jared Klineman Cooper, Robert James Foy, David Michael Peltz, Eugene Smith, Steven Andrew Kellner, Brian William Schroeck, Keith Gilbertson, Joseph Forrest Noffsinger, Wolfgang Daum