Patents by Inventor Steven B. Alexander

Steven B. Alexander has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11927678
    Abstract: Apparatus and methods provide anti-spoofing capability from a first global navigation satellite system (GNSS) receiver to a second GNSS receiver. These GNSS receivers can be, for example, global positioning satellite (GPS) receivers. Via an authentication technique, signals from authentic GNSS sources are distinguished from signals from spoofers. Timing information, such as numerically-controlled oscillator (NCO) settings, used for tracking authenticated signals are then used to generate replica GNSS signals, which are then provided to the second GNSS receiver. As a result, the second GNSS receiver can provide accurate positioning system information in the presence of GNSS spoofers.
    Type: Grant
    Filed: November 16, 2021
    Date of Patent: March 12, 2024
    Assignee: L3Harris Interstate Electronics Corporation
    Inventors: Derek Michael Loomer Boyer, Steven B. Alexander, Richard F. Redhead
  • Publication number: 20230314621
    Abstract: Disclosed is a technique that can provide one or more countermeasures against spoofers. An antenna, movable in space, is used to receive space vehicle (SV) signals that appear to be associated with a plurality of space vehicles of a global navigation satellite system (GNSS). SV signals are identified that have similar signal power and/or phase signatures that respectively appear to be associated with at least a first space vehicle and a second space vehicle of the GNSS. An existence of a spoofer is identified based at least in part on the identification of SV signals that have similar signal power and/or phase signatures that respectively appear to be associated with at least the first space vehicle and the second space vehicle of the GNSS.
    Type: Application
    Filed: June 7, 2023
    Publication date: October 5, 2023
    Inventors: Ivan L. Johnston, Gilberto Isaac Sada, Steven B. Alexander, Randall Paul Jaffe, David Christopher Post, Nathan Douglas Haveman
  • Patent number: 11733389
    Abstract: Disclosed is a technique that can provide one or more countermeasures against spoofers. A beamformer can control an antenna pattern of a CRPA to generate a survey beam. The survey beam is swept across space to determine a characteristic signature based on carrier-to-noise ratios (C/No) for particular space vehicle signals. Matching C/No signatures can be used to identify the existence of spoofers and invoke a countermeasure, such as nulling.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: August 22, 2023
    Assignee: L3Harris Interstate Electronics Corporation
    Inventors: Ivan L. Johnston, Gilberto Isaac Sada, Steven B. Alexander
  • Patent number: 11693122
    Abstract: Disclosed is a technique that can provide one or more countermeasures against spoofers. A direction from which a spoofing attack occurs is identified. A beamformer can control an antenna pattern of a CRPA to null out signals from that direction, which can assist a GNSS receiver to avoid error induced by the spoofing attack. Further, after two or more observations, the location of the spoofer can be identified.
    Type: Grant
    Filed: March 2, 2021
    Date of Patent: July 4, 2023
    Assignee: L3Harris Interstate Electronics Corporation
    Inventors: Steven B. Alexander, Gilberto Isaac Sada
  • Patent number: 11675090
    Abstract: Apparatus and methods permit the use of a microelectromechanical systems (MEMS) oscillator in a satellite positioning system receiver, such as a Global Positioning System (GPS) receiver. Techniques to ameliorate jitter or phase noise disadvantages associated with MEMS oscillators are disclosed. For example, a receiver can use one or more of the following techniques: (a) use another source of information to retrieve ephemeris information, (2) perform advanced tight coupling, and/or (3) use a phase-locked loop to clean up the jitter or phase noise of the MEMS oscillator. With respect to advanced tight coupling, an advanced tight coupling processor can include nonlinear discriminators which transform I and Q data into linear residual measurements corrupted by unbiased, additive, and white noise. It also includes an amplitude estimator configured to operate in rapidly changing, high power noise; a measurement noise variance estimator; and a linear residual smoothing filter for input to the navigation filter.
    Type: Grant
    Filed: December 1, 2020
    Date of Patent: June 13, 2023
    Assignee: L3Harris Interstate Electronics Corporation
    Inventors: David Duane Chapman, Steven B. Alexander
  • Patent number: 11409003
    Abstract: Disclosed is a technique to estimate at least a portion of an attitude, such as an azimuth angle from true North, based on beam angles from a controlled reception pattern antenna (CRPA) to space vehicle locations. Other attitude information such as roll and/or pitch can also be estimated. The at least portion of the attitude can be provided with or without an additional sensor, such as a compass or magnetometer, an inertial measurement unit (IMU), or the like. An attitude estimate can be useful because oftentimes the attitude of an object can vary from its track or velocity direction.
    Type: Grant
    Filed: August 18, 2020
    Date of Patent: August 9, 2022
    Assignee: L3Harris Interstate Electronics Corporation
    Inventor: Steven B. Alexander
  • Publication number: 20220137233
    Abstract: Apparatus and methods provide anti-spoofing capability from a first global navigation satellite system (GNSS) receiver to a second GNSS receiver. These GNSS receivers can be, for example, global positioning satellite (GPS) receivers. Via an authentication technique, signals from authentic GNSS sources are distinguished from signals from spoofers. Timing information, such as numerically-controlled oscillator (NCO) settings, used for tracking authenticated signals are then used to generate replica GNSS signals, which are then provided to the second GNSS receiver. As a result, the second GNSS receiver can provide accurate positioning system information in the presence of GNSS spoofers.
    Type: Application
    Filed: November 16, 2021
    Publication date: May 5, 2022
    Inventors: Derek Michael Loomer Boyer, Steven B. Alexander, Richard F. Redhead
  • Patent number: 11287534
    Abstract: Apparatus and methods determine the rotational position of a spinning object. A satellite positioning system can be used to determine the spatial position of an object, which in turn can be used to guide the object. However, when the object is spinning, such as an artillery shell, then the rotational orientation should be known in order to properly actuate the control surfaces, such as fins, which will also be spinning.
    Type: Grant
    Filed: April 2, 2020
    Date of Patent: March 29, 2022
    Assignee: Interstate Electronics Corporation
    Inventors: Steven B. Alexander, Richard Redhead
  • Patent number: 11194053
    Abstract: Disclosed is a technique that can provide one or more countermeasures against spoofers. A beamformer can control an antenna pattern of a CRPA to generate a survey beam. The survey beam is swept across space to determine a characteristic signature based on carrier-to-noise ratios (C/No) for particular space vehicle signals. Matching C/No signatures can be used to identify the existence of spoofers and invoke a countermeasure, such as nulling.
    Type: Grant
    Filed: January 24, 2020
    Date of Patent: December 7, 2021
    Assignee: Interstate Electronics Corporation
    Inventors: Ivan L. Johnston, Gilberto Isaac Sada, Steven B. Alexander
  • Patent number: 11181646
    Abstract: Apparatus and methods provide anti-spoofing capability from a first global navigation satellite system (GNSS) receiver to a second GNSS receiver. These GNSS receivers can be, for example, global positioning satellite (GPS) receivers. Via an authentication technique, signals from authentic GNSS sources are distinguished from signals from spoofers. Timing information, such as numerically-controlled oscillator (NCO) settings, used for tracking authenticated signals are then used to generate replica GNSS signals, which are then provided to the second GNSS receiver. As a result, the second GNSS receiver can provide accurate positioning system information in the presence of GNSS spoofers.
    Type: Grant
    Filed: June 16, 2020
    Date of Patent: November 23, 2021
    Assignee: Interstate Electronics Corporation
    Inventors: Derek Michael Loomer Boyer, Steven B. Alexander, Richard F. Redhead
  • Patent number: 10948602
    Abstract: Disclosed is a technique that can provide one or more countermeasures against spoofers. A direction from which a spoofing attack occurs is identified. A beamformer can control an antenna pattern of a CRPA to null out signals from that direction, which can assist a GNSS receiver to avoid error induced by the spoofing attack. Further, after two or more observations, the location of the spoofer can be identified.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: March 16, 2021
    Assignee: Interstate Electronics Corporation
    Inventors: Steven B. Alexander, Gilberto Isaac Sada
  • Patent number: 10921464
    Abstract: Apparatus and methods determine the rotational position of a spinning object. A satellite positioning system can be used to determine the spatial position of an object, which in turn can be used to guide the object. An adaptive sideband filter is used to provide increased robustness against interference. However, when the object is spinning, such as an artillery shell, then the rotational orientation should be known in order to properly actuate the control surfaces, such as fins, which will also be spinning.
    Type: Grant
    Filed: June 15, 2020
    Date of Patent: February 16, 2021
    Assignee: Interstate Electronics Corporation
    Inventors: Steven B. Alexander, Richard F. Redhead
  • Patent number: 10866325
    Abstract: Apparatus and methods permit the use of a microelectromechanical systems (MEMS) oscillator in a satellite positioning system receiver, such as a Global Positioning System (GPS) receiver. Techniques to ameliorate jitter or phase noise disadvantages associated with MEMS oscillators are disclosed. For example, a receiver can use one or more of the following techniques: (a) use another source of information to retrieve ephemeris information, (2) perform advanced tight coupling, and/or (3) use a phase-locked loop to clean up the jitter or phase noise of the MEMS oscillator. With respect to advanced tight coupling, an advanced tight coupling processor can include nonlinear discriminators which transform I and Q data into linear residual measurements corrupted by unbiased, additive, and white noise. It also includes an amplitude estimator configured to operate in rapidly changing, high power noise; a measurement noise variance estimator; and a linear residual smoothing filter for input to the navigation filter.
    Type: Grant
    Filed: July 18, 2018
    Date of Patent: December 15, 2020
    Assignee: Interstate Electronics Corporation
    Inventors: David Duane Chapman, Steven B. Alexander
  • Publication number: 20200309958
    Abstract: Apparatus and methods provide anti-spoofing capability from a first global navigation satellite system (GNSS) receiver to a second GNSS receiver. These GNSS receivers can be, for example, global positioning satellite (GPS) receivers. Via an authentication technique, signals from authentic GNSS sources are distinguished from signals from spoofers. Timing information, such as numerically-controlled oscillator (NCO) settings, used for tracking authenticated signals are then used to generate replica GNSS signals, which are then provided to the second GNSS receiver. As a result, the second GNSS receiver can provide accurate positioning system information in the presence of GNSS spoofers.
    Type: Application
    Filed: June 16, 2020
    Publication date: October 1, 2020
    Inventors: Derek Michael Loomer Boyer, Steven B. Alexander, Richard F. Redhead
  • Patent number: 10768309
    Abstract: Disclosed is a technique to estimate at least a portion of an attitude, such as an azimuth angle from true North, based on beam angles from a controlled reception pattern antenna (CRPA) to space vehicle locations. Other attitude information such as roll and/or pitch can also be estimated. The at least portion of the attitude can be provided with or without an additional sensor, such as a compass or magnetometer, an inertial measurement unit (IMU), or the like. An attitude estimate can be useful because oftentimes the attitude of an object can vary from its track or velocity direction.
    Type: Grant
    Filed: July 9, 2018
    Date of Patent: September 8, 2020
    Assignee: Interstate Electronics Corporation
    Inventor: Steven B. Alexander
  • Patent number: 10725182
    Abstract: Apparatus and methods provide anti-spoofing capability from a first global navigation satellite system (GNSS) receiver to a second GNSS receiver. These GNSS receivers can be, for example, global positioning satellite (GPS) receivers. Via an authentication technique, signals from authentic GNSS sources are distinguished from signals from spoofers. Timing information, such as numerically-controlled oscillator (NCO) settings, used for tracking authenticated signals are then used to generate replica GNSS signals, which are then provided to the second GNSS receiver. As a result, the second GNSS receiver can provide accurate positioning system information in the presence of GNSS spoofers.
    Type: Grant
    Filed: January 4, 2018
    Date of Patent: July 28, 2020
    Assignee: Interstate Electronics Corporation
    Inventors: Derek Michael Loomer Boyer, Steven B. Alexander, Richard F. Redhead
  • Patent number: 10698119
    Abstract: Apparatus and methods determine the rotational position of a spinning object. A satellite positioning system can be used to determine the spatial position of an object, which in turn can be used to guide the object. An adaptive sideband filter is used to provide increased robustness against interference. However, when the object is spinning, such as an artillery shell, then the rotational orientation should be known in order to properly actuate the control surfaces, such as fins, which will also be spinning.
    Type: Grant
    Filed: May 17, 2018
    Date of Patent: June 30, 2020
    Assignee: Interstate Electronics Corporation
    Inventors: Steven B. Alexander, Richard F. Redhead
  • Patent number: 10620321
    Abstract: Apparatus and methods determine the rotational position of a spinning object. A satellite positioning system can be used to determine the spatial position of an object, which in turn can be used to guide the object. However, when the object is spinning, such as an artillery shell, then the rotational orientation should be known in order to properly actuate the control surfaces, such as fins, which will also be spinning.
    Type: Grant
    Filed: August 28, 2017
    Date of Patent: April 14, 2020
    Assignee: Interstate Electronics Corporation
    Inventors: Steven B. Alexander, Richard Redhead
  • Patent number: 10545246
    Abstract: Disclosed is a technique that can provide one or more countermeasures against spoofers. A beamformer can control an antenna pattern of a CRPA to generate a survey beam. The survey beam is swept across space to determine a characteristic signature based on carrier-to-noise ratios (C/No) for particular space vehicle signals. Matching C/No signatures can be used to identify the existence of spoofers and invoke a countermeasure, such as nulling.
    Type: Grant
    Filed: July 8, 2016
    Date of Patent: January 28, 2020
    Assignee: Interstate Electronics Corporation
    Inventors: Ivan L. Johnston, Gilberto Isaac Sada, Steven B. Alexander
  • Publication number: 20190204451
    Abstract: Apparatus and methods provide anti-spoofing capability from a first global navigation satellite system (GNSS) receiver to a second GNSS receiver. These GNSS receivers can be, for example, global positioning satellite (GPS) receivers. Via an authentication technique, signals from authentic GNSS sources are distinguished from signals from spoofers. Timing information, such as numerically-controlled oscillator (NCO) settings, used for tracking authenticated signals are then used to generate replica GNSS signals, which are then provided to the second GNSS receiver. As a result, the second GNSS receiver can provide accurate positioning system information in the presence of GNSS spoofers.
    Type: Application
    Filed: January 4, 2018
    Publication date: July 4, 2019
    Inventors: Derek Michael Loomer Boyer, Steven B. Alexander, Richard F. Redhead