Patents by Inventor Steven B. Ogunwumi
Steven B. Ogunwumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7132150Abstract: Porous ceramic catalyst supports or filters to be provided with catalyst coatings via oxide washcoating processes are pre-coated with polymer barrier layers to prevent washcoat nanoparticle intrusion into the microcracked and/or microporous surfaces of the ceramics, the barrier coatings being formed of hydrocarbon polymers that are soluble or dispersible in polar media, capable of forming neutral or hydrophilic surfaces on porous ceramic supports, and completely vaporizable at moderate washcoat stabilization or catalyst activation temperatures.Type: GrantFiled: August 14, 2003Date of Patent: November 7, 2006Assignee: Corning IncorporatedInventors: Steven B. Ogunwumi, Odessa N. Petzold, Yuxin Tang, Tinghong Tao, Jianguo Wang, Raja R. Wusirika
-
Patent number: 7071135Abstract: A ceramic body comprising a crystal phase of aluminum titanate in an amount of 50 to 95% by weight, and a glass phase in an amount of 5 to 50% by weight. The inventive ceramic body may include a second crystal phase, for example mullite in an amount of up to 40% by weight. The glass is an aluminosilicate including, in weight percent on an oxide basis, of 50–90 SiO2, 1–25 Al2O3, 0.5–10 TiO2, 0.5–20 R2O, where R is selected from the group consisting of Li, Na, K, Ru, Cs, Fr, and 0.5–20 R?O, where R? is selected from the group consisting of Be, Mg, Ca, Ba, Ra, and wherein the ceramic body includes not more than 2% by weight Fe2O3.Type: GrantFiled: September 29, 2004Date of Patent: July 4, 2006Assignee: Corning IncorporatedInventors: Steven B. Ogunwumi, Patrick D. Tepesch
-
Patent number: 7001861Abstract: An aluminum titanate-based ceramic article having a composition comprising u (Al2O3—TiO2)+v (R)+w (3Al2O3—2SiO2)+x (Al2O3)+y (SiO2)+z (1.1SrO-1.5Al2O3-13.6SiO2—TiO2)+a (Fe2O3—TiO2)+b (MgO-2TiO2), where, R is SrO—Al2O3-2SiO2 or 11.2SrO-10.9Al2O3-24.1SiO2—TiO2, where u, v, w, x, y, z, a and b are weight fractions of each component such that (u+v+w+x+y+z+a+b=1), and 0.5<u?0.95, 0.01<v?0.5, 0.01<w?0.5, 0?x?0.5, 0?y?0.1, 0?z?0.5, 0<a?0.3, and 0?b?0.3. A method of forming the ceramic article is provided. The ceramic article is useful in automotive emissions control systems, such as diesel exhaust filtration.Type: GrantFiled: July 24, 2003Date of Patent: February 21, 2006Assignee: Corning IncorporatedInventors: George H. Beall, Isabelle M. Melscoet-Chauvel, Steven B. Ogunwumi, Dell J. St. Julien, Patrick D. Tepesch, Christopher J. Warren
-
Patent number: 6942713Abstract: An aluminum titanate-based ceramic body having a composition a formula comprising a(Al2O3.TiO2)+b(CaO.Al2O3.2SiO2)+c(SrO.Al2O3.2SiO2)+d(BaO.Al2O3.2SiO2)+e(3Al2O3.2SiO2)+f(Al2O3)+g (SiO2)+h(Fe2O3.TiO2)+i(MgO.2TiO2), wherein a, b, c, d, e, f, g, h, and i are weight fractions of each component such that (a+b+c+d+e+f+g+h+i)=1, wherein 0.5<a?0.95; 0?b?0.5; 0?c?0.5; 0?d?0.5; 0<e?0.5; 0?f?0.5; 0?g?0.1; 0?h?0.3; 0?i?0.3; b+d>0.01. A method of forming the ceramic body is provided. The ceramic body is useful in automotive emissions control systems, such as diesel exhaust filtration.Type: GrantFiled: September 30, 2004Date of Patent: September 13, 2005Assignee: Corning IncorporatedInventors: Steven B. Ogunwumi, Patrick D. Tepesch, Raja R. Wusirika
-
Patent number: 6919047Abstract: A method for reducing NOx in lean exhaust gases to N2 includes injecting a fuel into the exhaust gases and passing the exhaust gases and fuel mixture through a catalyst to reduce the NOx to N2. The catalyst may be (a) a perovskite compound, (b) at least one metal oxide impregnated with at least one precious metal, (c) a zeolite impregnated with at least one precious metal, or (d) a combination of a zeolite and at least one metal oxide impregnated with at least one precious metal.Type: GrantFiled: October 10, 2000Date of Patent: July 19, 2005Assignee: Corning IncorporatedInventors: Lin He, Steven B. Ogunwumi
-
Patent number: 6897182Abstract: A catalyst for purification of exhaust gases including (1) a catalysis-promoting coating comprising a noble metal catalyst and a NOx storage component loaded onto a carrier material, wherein the NOx storage component comprises an alkali metal and, (2) a ceramic substrate for supporting the catalysis-promoting coating, wherein the ceramic substrate exhibits resistance to alkali metal migration below 1000° C. and a coefficient of thermal expansion of less than about 25×10?7/° C. (25-800° C.). A second aspect of, the invention is a process for purifying an exhaust gas from a lean burn engine involving simultaneously removing carbon monoxide, hydrocarbons and nitrogen oxides by bringing the exhaust gas from a lean burn engine into contact with the exhaust gas purifying catalyst of the present invention disclosed above.Type: GrantFiled: October 25, 2001Date of Patent: May 24, 2005Assignee: Corning IncorporatedInventors: Willard A. Cutler, J. Paul Day, Shahid G. Lakhwani, Steven B. Ogunwumi
-
Patent number: 6849181Abstract: The invention is directed at a mullite-aluminum titanate porous diesel particulate filter constituting a porous ceramic body containing, expressed in terms of weight percent of the total body, of 60-90%, preferably 70-80%, most preferably 70% iron-aluminum titanate solid solution having a stoichiometry of Al2(1?x)Fe2xTiO5, where x is 0-0.1, and 10-40%, preferably 20-30%, most preferably 30% mullite (3Al2O3.2SiO2), and consists essentially, expressed in terms of weigh percent on the oxide basis, of 3 to 15% SiO2, 55 to 65% Al2O3, 22 to 40% TiO2, and 0 to 10% Fe2O3, and being useful for filtration of diesel exhaust. The inventive diesel particulate filter exhibits high interconnected open porosity and large median pore size, in combination with high permeability when fired to a temperature of between 1650° to 1700° C., along with high thermal shock resistance and good filtration capability.Type: GrantFiled: July 31, 2002Date of Patent: February 1, 2005Assignee: Corning IncorporatedInventors: Steven B. Ogunwumi, Patrick D. Tepesch
-
Patent number: 6835689Abstract: A catalyst for converting NOx in exhaust gases from internal combustion engines to NH3 includes a perovskite material or a metal oxide impregnated with a noble metal, the metal oxide comprising at least one selected from Fe2O3, Cr2O3, MgO, La2O3, and CeO2, and the noble metal comprising at least one selected from Pt, Pd, Ir, Rh, and Ru.Type: GrantFiled: October 10, 2000Date of Patent: December 28, 2004Assignee: Corning IncorporatedInventors: Lin He, Steven B. Ogunwumi
-
Publication number: 20040092381Abstract: An aluminum titanate-based ceramic article having a composition comprising u (Al2O3-TiO2)+v (R)+w (3Al2O3-2SiO2)+x (Al2O3)+y (SiO2)+z (1.1SrO-1.5Al2O3-13.6SiO2-TiO2)+a (Fe2O3-TiO2)+b (MgO-2TiO2), where, R is SrO-Al2O3-2SiO2 or 11.2SrO-10.9Al2O3-24.1SiO2-TiO2, where u, v, w, x, y, z, a and b are weight fractions of each component such that (u+v+w+x+y+z+a+b=1), and 0.5<u≦0.95, 0.01<v≦0.5, 0.01<w≦0.5, 0<x≦0.5, 0<y≦0.1, 0<z≦0.5, 0<a≦0.3, and 0<b≦0.3. A method of forming the ceramic article is provided. The ceramic article is useful in automotive emissions control systems, such as diesel exhaust filtration.Type: ApplicationFiled: July 24, 2003Publication date: May 13, 2004Inventors: George H. Beall, Isabelle M. Melscoet-Chauvel, Steven B. Ogunwumi, Dell J. St. Julien, Patrick D. Tepesch, Christopher J. Warren
-
Publication number: 20040020846Abstract: The invention is directed at a mullite-aluminum titanate porous diesel particulate filter constituting a porous ceramic body containing, expressed in terms of weight percent of the total body, of 60-90%, preferably 70-80%, most preferably 70% iron-aluminum titanate solid solution having a stoichiometry of Al2(1−x)Fe2xTiO5, where x is 0-0.1, and 10-40%, preferably 20-30%, most preferably 30% mullite (3Al2O3.2SiO2), and consists essentially, expressed in terms of weigh percent on the oxide basis, of 3 to 15% SiO2, 55 to 65% Al2O3, 22 to 40% TiO2, and 0 to 10% Fe2O3, and being useful for filtration of diesel exhaust. The inventive diesel particulate filter exhibits high interconnected open porosity and large median pore size, in combination with high permeability when fired to a temperature of between 1650° to 1700° C., along with high thermal shock resistance and good filtration capability.Type: ApplicationFiled: July 31, 2002Publication date: February 5, 2004Inventors: Steven B. Ogunwumi, Patrick D. Tepesch
-
Patent number: 6620751Abstract: A structure for use in high temperature applications and including a porous ceramic material consisting essentially of about 50-90 percent by weight iron or magnesium stabilized aluminum titanate (AlTiO5) and about 10-50 percent by weight strontium feldspar (SrO.Al2O3.2SiO2), and having a coefficient of thermal expansion over a temperature range from room temperature to 1000° C. of about −10×10−7/° C. to +15×10−7/° C., a heat capacity at 500° C. greater than 3.2 J/cm3K, a porosity of about 15-50 percent by volume, preferably 40-50 percent by volume, and a median pore size of about 5-50 micrometers, preferably 8-15 micrometers. The structure is especially useful as a diesel exhaust particulate filter.Type: GrantFiled: March 14, 2002Date of Patent: September 16, 2003Assignee: Corning IncorporatedInventor: Steven B. Ogunwumi
-
Patent number: 6555492Abstract: A catalyst for purifying an exhaust gas to remove nitrogen oxides, carbon monoxide and hydrocarbons from exhaust gas comprising a zeolite having a silica/alumina molar ratio of greater than 55, and at least 1.5%, by weight, each of nickel and cobalt incorporated therein. A second embodiment of the is an adsorber catalyst system for use in the removal of the oxides of nitrogen from waste gas, the adsorber/catalyst system comprising the following components: (1) a zeolite having a silica/alumina ratio of greater than 55; (2) at least 1.5%, by weight, each of nickel and cobalt incorporated therein; and, (3) an adsorber component comprising a mixture of gamma alumina support and a adsorber material selected from the group consisting of metal oxides, metal hydroxides, metal carbonates and mixed metal oxides.Type: GrantFiled: November 30, 2000Date of Patent: April 29, 2003Assignee: Corning IncorporatedInventors: Margaret K. Faber, Larry D. Gorges, Steven B. Ogunwumi
-
Publication number: 20020094932Abstract: A catalyst for purifying an exhaust gas to remove nitrogen oxides, carbon monoxide and hydrocarbons from exhaust gas comprising a zeolite having a silica/alumina molar ratio of greater than 55, and at least 1.5%, by weight, each of nickel and cobalt incorporated therein. A second embodiment of the is an adsorber catalyst system for use in the removal of the oxides of nitrogen from waste gas, the adsorber/catalyst system comprising the following components: (1) a zeolite having a silica/alumina ratio of greater than 55; (2) at least 1.5%, by weight, each of nickel and cobalt incorporated therein; and, (3) an adsorber component comprising a mixture of gamma alumina support and a adsorber material selected from the group consisting of metal oxides, metal hydroxides, metal carbonates and mixed metal oxides.Type: ApplicationFiled: November 30, 2000Publication date: July 18, 2002Inventors: Margaret K. Faber, Larry D. Gorges, Steven B. Ogunwumi
-
Publication number: 20020081255Abstract: A catalyst for purification of exhaust gases including (1) a catalysis-promoting coating comprising a noble metal catalyst and a NOx storage component loaded onto a carrier material, wherein the NOx storage component comprises an alkali metal and, (2) a ceramic substrate for supporting the catalysis-promoting coating, wherein the ceramic substrate exhibits resistance to alkali metal migration below 1000° C. and a coefficient of thermal expansion of less than about 25×10−7/° C. (25-800° C.). A second aspect of, the invention is a process for purifying an exhaust gas from a lean burn engine involving simultaneously removing carbon monoxide, hydrocarbons and nitrogen oxides by bringing the exhaust gas from a lean burn engine into contact with the exhaust gas purifying catalyst of the present invention disclosed above.Type: ApplicationFiled: October 25, 2001Publication date: June 27, 2002Inventors: Willard A. Cutler, J. Paul Day, Shahid G. Lakhwani, Steven B. Ogunwumi