Patents by Inventor Steven B. Roach

Steven B. Roach has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10755060
    Abstract: In one embodiment, a printed security mark comprises a random arrangement of printed LEDs and a wavelength conversion layer. During fabrication of the mark, the LEDs are energized, and the resulting dot pattern is converted into a unique digital first code and stored in a database. The emitted spectrum vs. intensity and persistence of the wavelength conversion layer is also encoded in the first code. The mark may be on a credit card, casino chip, banknote, passport, etc. to be authenticated. For authenticating the mark, the LEDs are energized and the dot pattern, spectrum vs. intensity, and persistence are converted into a code and compared to the first code stored in the database. If there is a match, the mark is authenticated.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: August 25, 2020
    Assignee: NTHDEGREE TECHNOLOGIES WORLDWIDE INC.
    Inventors: Steven B. Roach, Richard A. Blanchard, Eric Kahrs, Larry Todd Biggs, Chye Kiat Ang, Mark D. Lowenthal, William J. Ray
  • Patent number: 10482364
    Abstract: In one embodiment, an authentication area on a portable object comprises a random arrangement of printed LEDs and a wavelength conversion layer. The object to be authenticated may be a credit card, casino chip, or other object. When the LEDs are energized during authentication of the object, the emitted spectrum and/or persistence of the wavelength conversion layer is detected and encoded in a first code, then compared to valid codes stored in the database. If there is a match, the object is authenticated. The LED power may be remotely inductively coupled and may flash the LEDs, while the wavelength conversion layer emission slowly decays during its optical detection. The flash of blue LED light may be emitted from the edges of the object, which may act as a light guide, for optical feedback to the user that the object is being authenticated.
    Type: Grant
    Filed: May 14, 2019
    Date of Patent: November 19, 2019
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: Steven B. Roach, Richard A. Blanchard, Eric W. Kahrs, Larry Todd Biggs, Chye Kiat Ang, Mark D. Lowenthal, William J. Ray
  • Publication number: 20190272456
    Abstract: In one embodiment, an authentication area on a portable object comprises a random arrangement of printed LEDs and a wavelength conversion layer. The object to be authenticated may be a credit card, casino chip, or other object. When the LEDs are energized during authentication of the object, the emitted spectrum and/or persistence of the wavelength conversion layer is detected and encoded in a first code, then compared to valid codes stored in the database. If there is a match, the object is authenticated. The LED power may be remotely inductively coupled and may flash the LEDs, while the wavelength conversion layer emission slowly decays during its optical detection. The flash of blue LED light may be emitted from the edges of the object, which may act as a light guide, for optical feedback to the user that the object is being authenticated.
    Type: Application
    Filed: May 14, 2019
    Publication date: September 5, 2019
    Inventors: Steven B. Roach, Richard A. Blanchard, Eric W. Kahrs, Larry Todd Biggs, Chye Kiat Ang, Mark D. Lowenthal, William J. Ray
  • Patent number: 10402610
    Abstract: In one embodiment, a printed LED area comprises a random arrangement of printed LEDs and a wavelength conversion layer. The LED area is embedded in an object to be authenticated, such as a credit card or a casino chip. The object may include a light guide for enabling the generated light to be emitted from any portion of the object. In one embodiment, when the LEDs are energized during authentication of the object, the existence of light emitted by the object is sufficient authentication and/or provides feedback to the user that the object is being detected. For added security, the emitted spectrum vs. intensity and persistence of the wavelength conversion layer is detected and encoded in a first code, then compared to valid codes stored in the database. If there is a match, the object is authenticated.
    Type: Grant
    Filed: June 13, 2018
    Date of Patent: September 3, 2019
    Assignee: Nthdegree Technologies Worldwide Inc.
    Inventors: Steven B. Roach, Richard A. Blanchard, Eric Kahrs, Larry Todd Biggs, Chye Kiat Ang, Mark D. Lowenthal, William J. Ray
  • Publication number: 20180357455
    Abstract: In one embodiment, a printed security mark comprises a random arrangement of printed LEDs and a wavelength conversion layer. During fabrication of the mark, the LEDs are energized, and the resulting dot pattern is converted into a unique digital first code and stored in a database. The emitted spectrum vs. intensity and persistence of the wavelength conversion layer is also encoded in the first code. The mark may be on a credit card, casino chip, banknote, passport, etc. to be authenticated. For authenticating the mark, the LEDs are energized and the dot pattern, spectrum vs. intensity, and persistence are converted into a code and compared to the first code stored in the database. If there is a match, the mark is authenticated.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 13, 2018
    Inventors: Steven B. Roach, Richard A. Blanchard, Eric Kahrs, Larry Todd Biggs, Chye Kiat Ang, Mark D. Lowenthal, William J. Ray
  • Publication number: 20180357522
    Abstract: In one embodiment, a printed LED area comprises a random arrangement of printed LEDs and a wavelength conversion layer. The LED area is embedded in an object to be authenticated, such as a credit card or a casino chip. The object may include a light guide for enabling the generated light to be emitted from any portion of the object. In one embodiment, when the LEDs are energized during authentication of the object, the existence of light emitted by the object is sufficient authentication and/or provides feedback to the user that the object is being detected. For added security, the emitted spectrum vs. intensity and persistence of the wavelength conversion layer is detected and encoded in a first code, then compared to valid codes stored in the database. If there is a match, the object is authenticated.
    Type: Application
    Filed: June 13, 2018
    Publication date: December 13, 2018
    Inventors: Steven B. Roach, Richard A. Blanchard, Eric Kahrs, Larry Todd Biggs, Chye Kiat Ang, Mark D. Lowenthal, William J. Ray
  • Patent number: 9943931
    Abstract: Various embodiments of thermal compression bonding transient cooling solutions are described. Those embodiments include a an array of vertically separated micro channels coupled to a heater surface, wherein every outlet micro channel comprises two adjacent inlet micro channel, and wherein an inlet and outlet manifold are coupled to the array of micro channels, and wherein the heater surface and the micro channels are coupled within the same block.
    Type: Grant
    Filed: July 27, 2016
    Date of Patent: April 17, 2018
    Assignee: Intel Corporation
    Inventors: Zhihua Li, Hemanth K. Dhavaleswarapu, Joseph B. Petrini, Shankar Devasenathipathy, Steven B. Roach, Ioan Sauciuc, Pranav K. Desai, George S. Kostiew, Sanjoy K. Saha
  • Patent number: 9748199
    Abstract: Embodiments of a thermal compression bonding (TCB) process cooling manifold, a TCB process system, and a method for TCB using the cooling manifold are disclosed. In some embodiments, the cooling manifold comprises a pre-mixing chamber that is separated from a mixing chamber by a baffle. The baffle may comprise at least one concentric pattern formed through the baffle such that the primary cooling fluid in the pre-mixing chamber is substantially evenly distributed to the mixing chamber. The pre-mixing chamber may be coupled to a source of primary cooling fluid. The mixing chamber may have an input configured to accept the primary cooling fluid and an output to output the primary cooling fluid.
    Type: Grant
    Filed: March 7, 2016
    Date of Patent: August 29, 2017
    Assignee: Intel Corporation
    Inventors: Hemanth Dhavaleswarapu, Zhihua Li, Joseph Petrini, Steven B. Roach, Shankar Devasenathipathy, George Kostiew, Amram Eitan
  • Publication number: 20170014957
    Abstract: Various embodiments of thermal compression bonding transient cooling solutions are described. Those embodiments include a an array of vertically separated micro channels coupled to a heater surface, wherein every outlet micro channel comprises two adjacent inlet micro channel, and wherein an inlet and outlet manifold are coupled to the array of micro channels, and wherein the heater surface and the micro channels are coupled within the same block.
    Type: Application
    Filed: July 27, 2016
    Publication date: January 19, 2017
    Applicant: Intel Corporation
    Inventors: Zhihua Li, Hemanth K. Dhavaleswarapu, Joseph B. Petrini, Shankar Devasenathipathy, Steven B. Roach, Ioan Sauciuc, Pranav K. Desai, George S. Kostiew, Sanjoy K. Saha
  • Patent number: 9434029
    Abstract: Various embodiments of thermal compression bonding transient cooling solutions are described. Those embodiments include a an array of vertically separated micro channels coupled to a heater surface, wherein every outlet micro channel comprises two adjacent inlet micro channel, and wherein an inlet and outlet manifold are coupled to the array of micro channels, and wherein the heater surface and the micro channels are coupled within the same block.
    Type: Grant
    Filed: December 20, 2011
    Date of Patent: September 6, 2016
    Assignee: Intel Corporation
    Inventors: Zhihua Li, Hemanth K. Dhavaleswarapu, Joseph B. Petrini, Shankar Devasenathipathy, Steven B. Roach, Ioan Sauciuc, Pranav K. Desai, George S. Kostiew, Sanjoy K. Saha
  • Publication number: 20160211238
    Abstract: Embodiments of a thermal compression bonding (TCB) process cooling manifold, a TCB process system, and a method for TCB using the cooling manifold are disclosed. In some embodiments, the cooling manifold comprises a pre-mixing chamber that is separated from a mixing chamber by a baffle. The baffle may comprise at least one concentric pattern formed through the baffle such that the primary cooling fluid in the pre-mixing chamber is substantially evenly distributed to the mixing chamber. The pre-mixing chamber may be coupled to a source of primary cooling fluid. The mixing chamber may have an input configured to accept the primary cooling fluid and an output to output the primary cooling fluid.
    Type: Application
    Filed: March 7, 2016
    Publication date: July 21, 2016
    Inventors: Hemanth Dhavaleswarapu, Zhihua Li, Joseph Petrini, Steven B. Roach, Shankar Devasenathipathy, George S. Kostiew, Amram Eitan
  • Patent number: 9282650
    Abstract: Embodiments of a thermal compression bonding (TCB) process cooling manifold, a TCB process system, and a method for TCB using the cooling manifold are disclosed. In some embodiments, the cooling manifold comprises a pre-mixing chamber that is separated from a mixing chamber by a baffle. The baffle may comprise at least one concentric pattern formed through the baffle such that the primary cooling fluid in the pre-mixing chamber is substantially evenly distributed to the mixing chamber. The pre-mixing chamber may be coupled to a source of primary cooling fluid. The mixing chamber may have an input configured to accept the primary cooling fluid and an output to output the primary cooling fluid.
    Type: Grant
    Filed: December 18, 2013
    Date of Patent: March 8, 2016
    Assignee: Intel Corporation
    Inventors: Hemanth Dhavaleswarapu, Zhihua Li, Joseph Petrini, Steven B. Roach, Shankar Devasenathipathy, George Kostiew, Amram Eitan
  • Publication number: 20150173209
    Abstract: Embodiments of a thermal compression bonding (TCB) process cooling manifold, a TCB process system, and a method for TCB using the cooling manifold are disclosed. In some embodiments, the cooling manifold comprises a pre-mixing chamber that is separated from a mixing chamber by a baffle. The baffle may comprise at least one concentric pattern formed through the baffle such that the primary cooling fluid in the pre-mixing chamber is substantially evenly distributed to the mixing chamber. The pre-mixing chamber may be coupled to a source of primary cooling fluid. The mixing chamber may have an input configured to accept the primary cooling fluid and an output to output the primary cooling fluid.
    Type: Application
    Filed: December 18, 2013
    Publication date: June 18, 2015
    Inventors: Hemanth Dhavaleswarapu, Zhihua Li, Joseph Petrini, Steven B. Roach, Shankar Devasenathipathy, George Kostiew, Amram Eitan
  • Publication number: 20130299133
    Abstract: Various embodiments of thermal compression bonding transient cooling solutions are described. Those embodiments include a an array of vertically separated micro channels coupled to a heater surface, wherein every outlet micro channel comprises two adjacent inlet micro channel, and wherein an inlet and outlet manifold are coupled to the array of micro channels, and wherein the heater surface and the micro channels are coupled within the same block.
    Type: Application
    Filed: December 20, 2011
    Publication date: November 14, 2013
    Inventors: Zhihua Li, Hemanth K. Dhavaleswarapu, Joseph B. Petrini, Shankar Devasenathipathy, Steven B. Roach, Ioan Sauciuc, Pranav K. Desai, George S. Kostiew, Sanjoy K. Saha
  • Patent number: 8308047
    Abstract: A flux spray head, a mask, and an integrated circuit substrate are arranged in a flux spray station to reduce flux overspray during a spraying operation. A support element within the spray station is used to align the substrate with the mask and spray head. A portion of the mask contacts the substrate along a boundary between a region to be sprayed and a region to be masked. The flux spray head sprays the substrate while a portion of the mask is in contact with the boundary of the region to be masked. In an embodiment, the mask may comprise one or more replaceable non-stick stencil elements and associated springs to press the stencil elements against the substrate. Each stencil element may have a wall to contact the substrate along a portion of the boundary.
    Type: Grant
    Filed: December 19, 2006
    Date of Patent: November 13, 2012
    Assignee: Intel Corporation
    Inventors: Joel Williams, Sonny J. Randall, Steven B. Roach, Sabina J. Houle
  • Publication number: 20080145541
    Abstract: A flux spray head, a mask, and an integrated circuit substrate are arranged in a flux spray station to reduce flux overspray during a spraying operation. A support element within the spray station is used to align the substrate with the mask and spray head. A portion of the mask contacts the substrate along a boundary between a region to be sprayed and a region to be masked. The flux spray head sprays the substrate while a portion of the mask is in contact with the boundary of the region to be masked. In an embodiment, the mask may comprise one or more replaceable non-stick stencil elements and associated springs to press the stencil elements against the substrate. Each stencil element may have a wall to contact the substrate along a portion of the boundary.
    Type: Application
    Filed: December 19, 2006
    Publication date: June 19, 2008
    Inventors: Joel Williams, Sonny J. Randall, Steven B. Roach, Sabina J. Houle
  • Patent number: 6129256
    Abstract: The invention provides a reflow furnace for an electronic assembly. The electronic assembly comprises a printed circuit board and a device on the printed circuit board. The printed circuit board has solder at a first area near the device and a metallic surface at second area distant from the device. The furnace comprises a frame, a support, a heater, and a shield. The support is secured to the frame and is capable of holding the printed circuit board. The heater is secured to the frame and is capable of heating the printed circuit board while being held by the support. The shield is secured to the frame and is positioned to prevent solder from migrating from the first area to the metallic surface at the second area while the printed circuit board is being heated.
    Type: Grant
    Filed: September 21, 1999
    Date of Patent: October 10, 2000
    Assignee: Intel Corporation
    Inventors: Jeffrey R. Watson, Kiet M. Van, Steven B. Roach