Patents by Inventor Steven Bolaji Ogunwumi

Steven Bolaji Ogunwumi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10343117
    Abstract: A catalyst body which includes ceria:zirconia and a metal-zeolite, and is substantially free, or free, of tungsten or tungsten compounds, and methods of manufacture. The ceria and zirconia are present with a zirconia/ceria mole ratio of less than or equal to 1.0. The catalyst body is especially useful in NOx reduction applications.
    Type: Grant
    Filed: February 27, 2009
    Date of Patent: July 9, 2019
    Assignee: Corning Incorporated
    Inventors: Kaveh Adib, Jacqueline Leslie Brown, Steven Bolaji Ogunwumi
  • Patent number: 10188985
    Abstract: Extruded honeycomb catalyst bodies and methods of manufacturing same. The catalyst body includes a first oxide selected from the group consisting of tungsten oxides, vanadium oxides, and combinations thereof, a second oxide selected from the group consisting of cerium oxides, lanthanum oxides, zirconium oxides, and combinations thereof, and a zeolite.
    Type: Grant
    Filed: November 10, 2016
    Date of Patent: January 29, 2019
    Assignees: Corning Incorporated, Dalian Institute of Chemical Physics, Chinese Academy of Sciences
    Inventors: Steven Bolaji Ogunwumi, Mallanagouda Dyamanagouda Patil, Yuming Xie, Hao Cheng, Shudong Wang
  • Publication number: 20180296961
    Abstract: An article for capturing carbon dioxide and methods of making the same. The article includes a honeycomb substrate and an amine alcohol. The amine alcohol is contained within the porous partition walls of the honeycomb substrate. The article may be used in processes for removing an acid gas from a target gas.
    Type: Application
    Filed: October 13, 2016
    Publication date: October 18, 2018
    Applicant: Corning Incorporated
    Inventors: Dayue David Jiang, Steven Bolaji Ogunwumi
  • Patent number: 9764284
    Abstract: A batch composition for making a highly porous honeycomb ceramic catalytic filter article, including base inorganic components including a mixture of a nano-zeolite powder, and an inorganic filler, in amounts defined herein; and super additives including: a mixture of at least two pore formers; a binder; and a metal salt, in amounts defined herein. Also disclosed are extruded catalyst filter articles and methods for making the articles.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: September 19, 2017
    Assignee: Corning Incorporated
    Inventors: Yanxia Ann Lu, Steven Bolaji Ogunwumi
  • Publication number: 20170056823
    Abstract: Extruded honeycomb catalyst bodies and methods of manufacturing same. The catalyst body includes a first oxide selected from the group consisting of tungsten oxides, vanadium oxides, and combinations thereof, a second oxide selected from the group consisting of cerium oxides, lanthanum oxides, zirconium oxides, and combinations thereof, and a zeolite.
    Type: Application
    Filed: November 10, 2016
    Publication date: March 2, 2017
    Inventors: Steven Bolaji Ogunwumi, Mallanagouda Dyamanagouda Patil, Yuming Xie, Hao Cheng, Shudong Wang
  • Patent number: 9492811
    Abstract: Extruded honeycomb catalyst bodies and methods of manufacturing same. The catalyst body includes a first oxide selected from the group consisting of tungsten oxides, vanadium oxides, and combinations thereof, a second oxide selected from the group consisting of cerium oxides, lanthanum oxides, zirconium oxides, and combinations thereof, and a zeolite.
    Type: Grant
    Filed: February 26, 2010
    Date of Patent: November 15, 2016
    Assignee: Corning Incorporated
    Inventors: Steven Bolaji Ogunwumi, Mallanagouda Dyamanagouda Patil, Yuming Xie, Hao Cheng, Shudong Wang
  • Publication number: 20150299054
    Abstract: A shaped article for use in a separation device may be produced by forming a batch mixture that includes filler material, fibrous material, and an inorganic binder, and shaping the batch mixture into a shaped structure. The fibrous material may have a D50 of greater than or equal to about 4 microns. The batch mixture may include greater than or equal to about 60 parts by weight and less than or equal to about 98 parts by weight of filler material, greater than or equal to about 2 parts by weight and less than or equal to about 40 parts by weight of fibrous material, and greater than or equal to about 10 parts by weight and less than or equal to about 50 parts by weight of inorganic binder per 100 parts by weight of the sum of the filler material and fibrous material, respectively.
    Type: Application
    Filed: December 13, 2013
    Publication date: October 22, 2015
    Inventors: Steven Bolaji Ogunwumi, Huthavahana Kuchibhotla Sarma, Elizabeth Margaret Wheeler
  • Patent number: 9138676
    Abstract: High volumetric-efficiency thermally integrated systems for capturing a target gas from a process gas stream include a monolithic body and a distribution system. The monolithic body includes a first plurality of channels and a second plurality of channels each having sorbent surfaces that reversibly adsorb the target gas. The channels are in thermal communication such that heat from an exothermic adsorption of target gas in one plurality of channels is used by an endothermic desorption of target gas from the other plurality of channels. Methods for separating a target gas from a process gas stream include switching the high volumetric-efficiency thermally integrated systems between a first state and a second state. In the first state, the first plurality of channels undergoes desorption while the second undergoes adsorption. In the second state, the second plurality of channels undergoes desorption while the first plurality undergoes adsorption.
    Type: Grant
    Filed: September 3, 2014
    Date of Patent: September 22, 2015
    Assignee: CORNING INCORPORATED
    Inventors: Amit Halder, Steven Bolaji Ogunwumi
  • Patent number: 9073000
    Abstract: A reactor for adsorbing CO2 from a fluid stream includes a reactor housing having a fluid inlet and a fluid outlet. The reactor also includes an inlet ceramic honeycomb structure and an outlet ceramic honeycomb structure positioned inside the reactor housing. The inlet and outlet ceramic honeycomb structures have a plurality of partition walls extending in an axial direction thereby forming a plurality of flow channels and comprises a material that forms bonds with CO2 to adsorb the CO2. The inlet ceramic honeycomb structure is capable of adsorbing an inlet quantity of CO2 and the outlet ceramic honeycomb structure is capable of adsorbing an outlet quantity of CO2. The inlet quantity of CO2 is greater than the outlet quantity of CO2.
    Type: Grant
    Filed: March 14, 2012
    Date of Patent: July 7, 2015
    Assignee: Corning Incorporated
    Inventors: Amit Halder, Steven Bolaji Ogunwumi
  • Patent number: 9062586
    Abstract: Absorbent structures for CO2 capture include a honeycomb substrate having partition walls that extend through the honeycomb substrate. The partition walls have channel surfaces that define a plurality of individual channels including a plurality of reaction channels and a plurality of heat-exchange channels. The reaction channels and the heat-exchange channels are arranged such that individual reaction channels are in thermal communication with individual heat-exchange channels. Surfaces of the reaction channels surfaces include a sorbent material, and surfaces of the heat-exchange channels include a coating layer. The coating layer includes a water-impermeable layer formed from a polymer material. The polymer material of the water-impermeable layer does not substantially penetrate into the sorbent material of the partition walls or of the reaction-channel surfaces.
    Type: Grant
    Filed: March 12, 2013
    Date of Patent: June 23, 2015
    Assignee: CORNING INCORPORATED
    Inventors: Dayue David Jiang, Steven Bolaji Ogunwumi, Zhen Song
  • Patent number: 9011583
    Abstract: An article comprising a plurality of intersecting walls having outer surfaces that define a plurality of cells extending from one end to a second end, wherein the walls forming each cell in a first subset of cells are covered by a barrier layer to form a plurality of heat exchange flow channels, and wherein the walls forming each cell in a second subset of cells different from the first subset of cells, comprise a CO2 sorbent and form reaction flow channels. Heat exchange flow channels allow quick and uniform heating and cooling of the sorbent body. The article may be useful, for example, for removing CO2 from a gas stream.
    Type: Grant
    Filed: April 29, 2011
    Date of Patent: April 21, 2015
    Assignee: Corning Incorporated
    Inventors: Amit Halder, Dayue David Jiang, Weiguo Miao, Steven Bolaji Ogunwumi, Zhen Song
  • Patent number: 8974577
    Abstract: Articles for capturing or separating a target gas from a gas stream may include a porous substrate such as a flexible sheet or mat, or a rigid ceramic monolith impregnated or coated with a sorbent composition. The sorbent composition may include a polyamine and a coexistent polymer chemically bonded to the polyamine. The polyamine may include a polyethylenimine. The coexistent polymer may include a polyurethane, a polyolefin-acrylic acid copolymer, or a combination thereof. The sorbent composition may be substantially less water-insoluble than compositions containing only a polyamine and may have high durability and good adsorption capacity for acidic target gases such as carbon dioxide. Methods for preparing the articles using aqueous polymer solutions are provided. Methods for capturing or separating target gases using the articles are provided.
    Type: Grant
    Filed: April 23, 2013
    Date of Patent: March 10, 2015
    Assignee: Corning Incorporated
    Inventors: Dayue David Jiang, Steven Bolaji Ogunwumi
  • Publication number: 20140366725
    Abstract: High volumetric-efficiency thermally integrated systems for capturing a target gas from a process gas stream include a monolithic body and a distribution system. The monolithic body includes a first plurality of channels and a second plurality of channels each having sorbent surfaces that reversibly adsorb the target gas. The channels are in thermal communication such that heat from an exothermic adsorption of target gas in one plurality of channels is used by an endothermic desorption of target gas from the other plurality of channels. Methods for separating a target gas from a process gas stream include switching the high volumetric-efficiency thermally integrated systems between a first state and a second state. In the first state, the first plurality of channels undergoes desorption while the second undergoes adsorption. In the second state, the second plurality of channels undergoes desorption while the first plurality undergoes adsorption.
    Type: Application
    Filed: September 3, 2014
    Publication date: December 18, 2014
    Inventors: Amit Halder, Steven Bolaji Ogunwumi
  • Patent number: 8901030
    Abstract: Sorbent substrates for CO2 capture and methods for forming the same are disclosed. In one embodiment, a method for forming a sorbent substrate for CO2 capture may include forming a plurality of matrix rods from a sorbent material and forming a plurality of channel rods from a support material. The plurality of matrix rods may then be co-extruded with the plurality of channel rods to form a plurality of sorbent filaments comprising a matrix of the sorbent material in which channels of support material are positioned such that the channels extend in an axial direction of each of the plurality of sorbent filaments. The plurality of sorbent filaments may then be stacked to form a filament assembly in which the plurality of sorbent filaments are axially aligned. Thereafter, the plurality of sorbent filaments of the filament assembly may be bonded to one another to form the sorbent substrate.
    Type: Grant
    Filed: April 7, 2014
    Date of Patent: December 2, 2014
    Assignee: Corning Incorporated
    Inventors: Karen Jo Knapp, Steven Bolaji Ogunwumi, Elizabeth Margaret Wheeler, John Forrest Wight, Jr., James William Zimmermann
  • Publication number: 20140311341
    Abstract: Articles for capturing or separating a target gas from a gas stream may include a porous substrate such as a flexible sheet or mat, or a rigid ceramic monolith impregnated or coated with a sorbent composition. The sorbent composition may include a polyamine and a coexistent polymer chemically bonded to the polyamine. The polyamine may include a polyethylenimine. The coexistent polymer may include a polyurethane, a polyolefin-acrylic acid copolymer, or a combination thereof. The sorbent composition may be substantially less water-insoluble than compositions containing only a polyamine and may have high durability and good adsorption capacity for acidic target gases such as carbon dioxide. Methods for preparing the articles using aqueous polymer solutions are provided. Methods for capturing or separating target gases using the articles are provided.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 23, 2014
    Applicant: Corning Incorporated
    Inventors: Dayue David Jiang, Steven Bolaji Ogunwumi
  • Patent number: 8858690
    Abstract: High volumetric-efficiency thermally integrated systems for capturing a target gas from a process gas stream include a monolithic body and a distribution system. The monolithic body includes a first plurality of channels and a second plurality of channels each having sorbent surfaces that reversibly adsorb the target gas. The channels are in thermal communication such that heat from an exothermic adsorption of target gas in one plurality of channels is used by an endothermic desorption of target gas from the other plurality of channels. Methods for separating a target gas from a process gas stream include switching the high volumetric-efficiency thermally integrated systems between a first state and a second state. In the first state, the first plurality of channels undergoes desorption while the second undergoes adsorption. In the second state, the second plurality of channels undergoes desorption while the first plurality undergoes adsorption.
    Type: Grant
    Filed: August 24, 2011
    Date of Patent: October 14, 2014
    Assignee: Corning Incorporated
    Inventors: Amit Halder, Steven Bolaji Ogunwumi
  • Publication number: 20140271394
    Abstract: Absorbent structures for CO2 capture include a honeycomb substrate having partition walls that extend through the honeycomb substrate. The partition walls have channel surfaces that define a plurality of individual channels including a plurality of reaction channels and a plurality of heat-exchange channels. The reaction channels and the heat-exchange channels are arranged such that individual reaction channels are in thermal communication with individual heat-exchange channels. Surfaces of the reaction channels surfaces include a sorbent material, and surfaces of the heat-exchange channels include a coating layer. The coating layer includes a water-impermeable layer formed from a polymer material. The polymer material of the water-impermeable layer does not substantially penetrate into the sorbent material of the partition walls or of the reaction-channel surfaces.
    Type: Application
    Filed: March 12, 2013
    Publication date: September 18, 2014
    Applicant: Corning Incorporated
    Inventors: Dayue David Jiang, Steven Bolaji Ogunwumi, Zhen Song
  • Patent number: 8815763
    Abstract: A method of manufacturing a catalyst body which includes: soaking at least part of a fired zeolite-based body in a transition metal oxide solution; removing the body from the transition metal oxide solution; exposing the body to a humidified atmosphere at one or more temperatures above 20° C.; then drying the body; and calcining the body.
    Type: Grant
    Filed: May 26, 2011
    Date of Patent: August 26, 2014
    Assignee: Corning Incorporated
    Inventors: Steven Bruce Dawes, Steven Bolaji Ogunwumi
  • Publication number: 20140216639
    Abstract: Sorbent substrates for CO2 capture and methods for forming the same are disclosed. In one embodiment, a method for forming a sorbent substrate for CO2 capture may include forming a plurality of matrix rods from a sorbent material and forming a plurality of channel rods from a support material. The plurality of matrix rods may then be co-extruded with the plurality of channel rods to form a plurality of sorbent filaments comprising a matrix of the sorbent material in which channels of support material are positioned such that the channels extend in an axial direction of each of the plurality of sorbent filaments. The plurality of sorbent filaments may then be stacked to form a filament assembly in which the plurality of sorbent filaments are axially aligned. Thereafter, the plurality of sorbent filaments of the filament assembly may be bonded to one another to form the sorbent substrate.
    Type: Application
    Filed: April 7, 2014
    Publication date: August 7, 2014
    Applicant: Corning Incorporated
    Inventors: Karen Jo Knapp, Steven Bolaji Ogunwumi, Elizabeth Margaret Wheeler, John Forrest Wight, JR., James William Zimmermann
  • Patent number: 8728218
    Abstract: Sorbent substrates for CO2 capture and methods for forming the same are disclosed. In one embodiment, a method for forming a sorbent substrate for CO2 capture may include forming a plurality of matrix rods from a sorbent material and forming a plurality of channel rods from a support material. The plurality of matrix rods may then be co-extruded with the plurality of channel rods to form a plurality of sorbent filaments comprising a matrix of the sorbent material in which channels of support material are positioned such that the channels extend in an axial direction of each of the plurality of sorbent filaments. The plurality of sorbent filaments may then be stacked to form a filament assembly in which the plurality of sorbent filaments are axially aligned. Thereafter, the plurality of sorbent filaments of the filament assembly may be bonded to one another to form the sorbent substrate.
    Type: Grant
    Filed: September 15, 2011
    Date of Patent: May 20, 2014
    Assignee: Corning Incorporated
    Inventors: Karen Jo Knapp, Steven Bolaji Ogunwumi, Elizabeth Margaret Wheeler, John Forrest Wight, Jr., James William Zimmermann