Patents by Inventor Steven Buechler

Steven Buechler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11851713
    Abstract: Disclosed are genetic methods and tools for colon cancer disease classification in disease subtypes, CMS1, CMS2, CMS3, CMS4, as well as improved methods for rapid, more accurate, and more reliably reproducible disease subtype determination. Tailored treatment protocols are also provided, employing the predicted CMS of the subject sample. Genetic sequence binding targets for some or all of these gene panels may be affixed to a solid substrate, and included as part of a screening tool and/or diagnostic kit. The expression levels of the genes may be assessed to provide a genetic signature for a subtype or lack of subtype (CMS1, CMS2, CMS3, CMS4, combination subtype). The methods employ a scoring system, wherein a score is derived from the genetic expression profile/signature of the panel of selected genes, and a qualifying continuous score for each CMS subtype is determined against a predictive threshold for each colon cancer subtype.
    Type: Grant
    Filed: September 8, 2020
    Date of Patent: December 26, 2023
    Assignee: University of Notre Dame du Lac
    Inventor: Steven Buechler
  • Patent number: 11549152
    Abstract: Products, systems, and methods for classifying human colorectal cancer into a consensus molecular subtype (CMS) and for assessing risk of recurrence based on CMS scores and based on risk scores derived from abbreviated gene expression profiles, for determining suitable treatment protocols for human colorectal cancer patients based on the determined CMS classification and based on the determined risk of recurrence, and for administering the suitable treatment protocols.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: January 10, 2023
    Assignee: University of Notre Dame du Lac
    Inventor: Steven Buechler
  • Patent number: 11198911
    Abstract: Products, systems, and methods for classifying human colorectal cancer into a consensus molecular subtype (CMS) and for assessing risk of recurrence based on CMS scores and based on risk scores derived from abbreviated gene expression profiles, for determining suitable treatment protocols for human colorectal cancer patients based on the determined CMS classification and based on the determined risk of recurrence, and for administering the suitable treatment protocols.
    Type: Grant
    Filed: March 7, 2019
    Date of Patent: December 14, 2021
    Assignee: UNIVERSITY OF NOTRE DAME DU LAC
    Inventor: Steven Buechler
  • Publication number: 20210108272
    Abstract: Products, systems, and methods for classifying human colorectal cancer into a consensus molecular subtype (CMS) and for assessing risk of recurrence based on CMS scores and based on risk scores derived from abbreviated gene expression profiles, for determining suitable treatment protocols for human colorectal cancer patients based on the determined CMS classification and based on the determined risk of recurrence, and for administering the suitable treatment protocols.
    Type: Application
    Filed: March 7, 2019
    Publication date: April 15, 2021
    Inventor: Steven Buechler
  • Publication number: 20210082540
    Abstract: Products, systems, and methods for classifying human colorectal cancer into a consensus molecular subtype (CMS) and for assessing risk of recurrence based on CMS scores and based on risk scores derived from abbreviated gene expression profiles, for determining suitable treatment protocols for human colorectal cancer patients based on the determined CMS classification and based on the determined risk of recurrence, and for administering the suitable treatment protocols.
    Type: Application
    Filed: March 7, 2019
    Publication date: March 18, 2021
    Inventor: Steven Buechler
  • Publication number: 20200407803
    Abstract: Disclosed are genetic methods and tools for colon cancer disease classification in disease subtypes, CMS1, CMS2, CMS3, CMS4, as well as improved methods for rapid, more accurate, and more reliably reproducible disease subtype determination. Tailored treatment protocols are also provided, employing the predicted CMS of the subject sample. Genetic sequence binding targets for some or all of these gene panels may be affixed to a solid substrate, and included as part of a screening tool and/or diagnostic kit. The expression levels of the genes may be assessed to provide a genetic signature for a subtype or lack of subtype (CMS1, CMS2, CMS3, CMS4, combination subtype). The methods employ a scoring system, wherein a score is derived from the genetic expression profile/signature of the panel of selected genes, and a qualifying continuous score for each CMS subtype is determined against a predictive threshold for each colon cancer subtype.
    Type: Application
    Filed: September 8, 2020
    Publication date: December 31, 2020
    Inventor: Steven Buechler
  • Patent number: 10174382
    Abstract: A genetic biomarker panel is provided for prognosing late onset ER+ breast cancer relapse, in a breast cancer survivor patient. Kits are also provided for measuring levels or the presence of an identified panel of genetic biomarkers. Methods are also provided for identifying a breast cancer survivor patient at a relatively high risk of suffering a breast cancer relapse within 8 years of diagnosis, and therefore suitable for treatment with an aggressive chemotherapeutic regimen. The method may also be used for identifying a breast cancer survivor patient not at high risk of suffering a breast cancer relapse within 8 years of diagnosis, and thus not suitable for treatment with an aggressive chemotherapeutic regimen. The genetic biomarker panel includes an oligonucleotide/nucleic acid sequence specific for the following genes: MKI67, SPAG5, ESPL1, PLK1, or a genetic panel for MKI67, SPAG5, ESPL1, PLK1 and PGR.
    Type: Grant
    Filed: May 13, 2015
    Date of Patent: January 8, 2019
    Assignees: University of Notre Dame, Indiana University Research and Technology Corporation
    Inventors: Steven Buechler, Sunil Badve, Yesim Gokmen-Polar
  • Patent number: 10087489
    Abstract: Genetic biomarkers for left side colon cancer (LCC) (such as expression levels of an RNA transcript or expression product of NOX4, MMP3, or a combination) and right side colon cancer (RCC) (such as expression levels of an RNA transcript or expression product of CDCX2, FAM69A, or a combination), are disclosed. Methods for using the biomarkers in providing a prognosis of relapse-free survival probability in patients having LCC or RCC are also presented. Prognostic panels using gene expression values of the biomarkers are also presented. Computer implemented methods employing the biomarkers, and as well as for determining relapse-free survival probability in a patient having RCC or LCC are provided. A genetic method for classifying a colon cancer tissue as a RCC or as a LCC is also disclosed.
    Type: Grant
    Filed: September 26, 2016
    Date of Patent: October 2, 2018
    Assignee: The University of Notre Dame
    Inventors: Steven Buechler, Amanda B. Hummon
  • Publication number: 20170283877
    Abstract: Genetic biomarkers for left side colon cancer (LCC) (such as expression levels of an RNA transcript or expression product of NOX4, MMP3, or a combination) and right side colon cancer (RCC) (such as expression levels of an RNA transcript or expression product of CDCX2, FAM69A, or a combination), are disclosed. Methods for using the biomarkers in providing a prognosis of relapse-free survival probability in patients having LCC or RCC are also presented. Prognostic panels using gene expression values of the biomarkers are also presented. Computer implemented methods employing the biomarkers, and as well as for determining relapse-free survival probability in a patient having RCC or LCC are provided. A genetic method for classifying a colon cancer tissue as a RCC or as a LCC is also disclosed.
    Type: Application
    Filed: September 26, 2016
    Publication date: October 5, 2017
    Inventors: Steven Buechler, Amanda B. Hummon
  • Publication number: 20170247766
    Abstract: A method for determining the likelihood of late ER? breast cancer disease relapse/recurrence is disclosed. Late ER+ breast cancer disease onset and/or recurrence is determined for a period of 5 to 20 years after an initial ER+ breast cancer disease onset in a patient. An ER+ breast cancer patient is assigned a risk score that is compared to a defined threshold value, and identifies the risk score as low risk or high risk for late breast cancer recurrence. A late ER+ breast cancer gene panel of 8 to 15 genes is provided. Subjects having a risk score greater than or equal to that of the threshold value are at a relatively high risk of recurrent disease, and are determined to benefit from aggressive therapeutic intervention, whereas subjects having a risk score less than the threshold value are at a relatively low risk of recurrent disease, and could forego treatment.
    Type: Application
    Filed: August 26, 2015
    Publication date: August 31, 2017
    Applicant: The University of Notre Dame du Lac
    Inventors: Steven Buechler, Sunil Badve
  • Patent number: 9721067
    Abstract: An Accelerated Progression Relapse Test (APRT) and method is provided for use in the prognosis of a patient having an ER+ breast cancer. The APRT provides a determination of when a patient in a particular diseased state is likely to benefit from further disease treatment, or does not have a high probability of benefit with additional treatment. Four genetic probes are disclosed that target the MKI67, CDC6 and SPAG5 gene and gene products. The ER+ breast cancer patient population is stratified into two groups, with the low gene expression group identifying the patient/patient group that is less likely to benefit from additional treatment measures, and a high gene expression group identifying the patient group that is more likely to benefit from additional treatment measures.
    Type: Grant
    Filed: November 1, 2013
    Date of Patent: August 1, 2017
    Assignee: UNIVERSITY OF NOTRE DAME DU LAC
    Inventor: Steven Buechler
  • Patent number: 9580756
    Abstract: Compositions/methods for employing fresh-frozen or FFPE colon cancer tissue in left side colon cancer (LCC) and right-side colon cancer (RCC) disease patients for risk of relapse assessment/stratification is provided (3 strata and a 4 strata methodology). An RCC gene panel of 4 genes (FAM69A, CDX2, FAM84A, ITGA3), and 9 genes (FAM69A, CDX2, ITGA3, FAM84A, ITPRIP, RAB3B, SMAD3, PCSK5, MMP28), is provided. An LCC gene panel of 4 genes (NOX4, WNT5A, MMP3, IBSP), and a 9 genes (MMP3, WINT5A, NOX4, IBSP, SLC16A6, CYPIBI, TFAP2C, MATN3, ANKRD6), is provided. A microchip-based clinical tool, and a kit including a microchip, is presented. The invention also describes a computer-implemented method for assessing relative risk of relapse in LCC and/or RCC disease. An individual patient scoring method that presents a continuous stratification score useful in the post-surgical colon cancer management of LCC and/or RCC patient is also presented.
    Type: Grant
    Filed: March 13, 2014
    Date of Patent: February 28, 2017
    Assignee: UNIVERSITY OF NOTRE DAME DU LAC
    Inventors: Steven Buechler, Amanda B. Hummon
  • Publication number: 20160378934
    Abstract: An Accelerated Progression Relapse Test (APRT) and method is provided for use in the prognosis of a patient having an ER+ breast cancer. The APRT provides a determination of when a patient in a particular diseased state is likely to benefit from further disease treatment, or does not have a high probability of benefit with additional treatment. Four genetic probes are disclosed that target the MK167, CDC6 and SPAG5 gene and gene products. The ER+ breast cancer patient population is stratified into two groups, with the low gene expression group identifying the patient/patient group that is less likely to benefit from additional treatment measures, and a high gene expression group identifying the patient group that is more likely to benefit from additional treatment measures.
    Type: Application
    Filed: November 1, 2013
    Publication date: December 29, 2016
    Inventor: Steven Buechler
  • Publication number: 20160333413
    Abstract: A genetic biomarker panel is provided for prognosing late onset ER+ breast cancer relapse, in a breast cancer survivor patient. Kits are also provided for measuring levels or the presence of an identified panel of genetic biomarkers. Methods are also provided for identifying a breast cancer survivor patient at a relatively high risk of suffering a breast cancer relapse within 8 years of diagnosis, and therefore suitable for treatment with an aggressive chemotherapeutic regimen. The method may also be used for identifying a breast cancer survivor patient not at high risk of suffering a breast cancer relapse within 8 years of diagnosis, and thus not suitable for treatment with an aggressive chemotherapeutic regimen. The genetic biomarker panel includes an oligonucleotide/nucleic acid sequence specific for the following genes: MKI67, SPAG5, ESPL1, PLK1, or a genetic panel for MKI67, SPAG5, ESPL1, PLK1 and PGR.
    Type: Application
    Filed: May 13, 2015
    Publication date: November 17, 2016
    Applicants: University of Notre Dame, Indiana University School of Medicine
    Inventors: Steven Buechler, Sunil Badve, Yesim Gokmen-Polar
  • Patent number: 9464328
    Abstract: Genetic biomarkers for left side colon cancer (LCC) (such as expression levels of an RNA transcript or expression product of NOX4, MMP3, or a combination) and right side colon cancer (RCC) (such as expression levels of an RNA transcript or expression product of CDCX2, FAM69A, or a combination), are disclosed. Methods for using the biomarkers in providing a prognosis of relapse-free survival probability in patients having LCC or RCC are also presented. Prognostic panels using gene expression values of the biomarkers are also presented. Computer implemented methods employing the biomarkers, and as well as for determining relapse-free survival probability in a patient having RCC or LCC are provided. A genetic method for classifying a colon cancer tissue as a RCC or as a LCC is also disclosed.
    Type: Grant
    Filed: August 7, 2014
    Date of Patent: October 11, 2016
    Assignee: UNIVERSITY OF NOTRE DAME
    Inventors: Steven Buechler, Amanda B. Hummon
  • Publication number: 20150126478
    Abstract: An Accelerated Progression Relapse Test (APRT) and method is provided for use in the prognosis of a patient having an ER+ breast cancer. The APRT provides a determination of when a patient in a particular diseased state is likely to benefit from further disease treatment, or does not have a high probability of benefit with additional treatment. Four genetic probes are disclosed that target the MK167, CDC6 and SPAG5 gene and gene products. The ER+ breast cancer patient population is stratified into two groups, with the low gene expression group identifying the patient/patient group that is less likely to benefit from additional treatment measures, and a high gene expression group identifying the patient group that is more likely to benefit from additional treatment measures.
    Type: Application
    Filed: November 1, 2013
    Publication date: May 7, 2015
    Inventor: Steven Buechler
  • Publication number: 20150073035
    Abstract: Genetic biomarkers for left side colon cancer (LCC) (such as expression levels of an RNA transcript or expression product of NOX4, MMP3, or a combination) and right side colon cancer (RCC) (such as expression levels of an RNA transcript or expression product of CDCX2, FAM69A, or a combination), are disclosed. Methods for using the biomarkers in providing a prognosis of relapse-free survival probability in patients having LCC or RCC are also presented. Prognostic panels using gene expression values of the biomarkers are also presented. Computer implemented methods employing the biomarkers, and as well as for determining relapse-free survival probability in a patient having RCC or LCC are provided. A genetic method for classifying a colon cancer tissue as a RCC or as a LCC is also disclosed.
    Type: Application
    Filed: August 7, 2014
    Publication date: March 12, 2015
    Inventors: Steven Buechler, Amanda B. Hummon
  • Publication number: 20150072878
    Abstract: Compositions/methods for employing fresh-frozen or FFPE colon cancer tissue in left side colon cancer (LCC) and right-side colon cancer (RCC) disease patients for risk of relapse assessment/stratification is provided (3 strata and a 4 strata methodology). An RCC gene panel of 4 genes (FAM69A, CDX2, FAM84A, ITGA3), and 9 genes (FAM69A, CDX2, ITGA3, FAM84A, ITPRIP, RAB3B, SMAD3, PCSK5, MMP28), is provided. An LCC gene panel of 4 genes (NOX4, WNT5A, MMP3, IBSP), and a 9 genes (MMP3, WINT5A, NOX4, IBSP, SLC16A6, CYPIBI, TFAP2C, MATN3, ANKRD6), is provided. A microchip-based clinical tool, and a kit including a microchip, is presented. The invention also describes a computer-implemented method for assessing relative risk of relapse in LCC and/or RCC disease. An individual patient scoring method that presents a continuous stratification score useful in the post-surgical colon cancer management of LCC and/or RCC patient is also presented.
    Type: Application
    Filed: March 13, 2014
    Publication date: March 12, 2015
    Applicant: University of Notre Dame
    Inventors: Steven Buechler, Amanda B. Hummon
  • Patent number: 8597885
    Abstract: An Accelerated Progression Relapse Test (APRT) is provided for use in the prognosis of a diseased state in a patient. The APRT provides a determination of when a patient in a particular diseased state is likely to benefit from further disease treatment, or does not have a high probability of benefit with additional treatment. In particular applications, the APRT may be used to determine the prognosis of an estrogen receptor positive (ER+) breast cancer patient. Four genetic probes are disclosed for this test, and target MK167, CDC6 and SPAG5 gene products. The ER+ breast cancer patient/patient population is stratified into two groups, with the low gene expression group identifying the patient/patient group that is less likely to benefit from additional treatment measures, and a high gene expression group identifying the patient/patient group as more likely to benefit from additional treatment measures.
    Type: Grant
    Filed: January 28, 2010
    Date of Patent: December 3, 2013
    Assignee: University of Notre Dame
    Inventor: Steven Buechler
  • Publication number: 20120172244
    Abstract: Genetic biomarkers for left side colon cancer (LCC) (such as expression levels of an RNA transcript or expression product of NOX4, MMP3, or a combination) and right side colon cancer (RCC) (such as expression levels of an RNA transcript or expression product of CDCX2, FAM69A, or a combination), are disclosed. Methods for using the biomarkers in providing a prognosis of relapse-free survival probability in patients having LCC or RCC are also presented. Prognostic panels using gene expression values of the biomarkers are also presented. Computer implemented methods employing the biomarkers, and as well as for determining relapse-free survival probability in a patient having RCC or LCC are provided. A genetic method for classifying a colon cancer tissue as a RCC or as a LCC is also disclosed.
    Type: Application
    Filed: December 20, 2011
    Publication date: July 5, 2012
    Inventors: Steven Buechler, Amanda Hummon