Patents by Inventor Steven C. Christian
Steven C. Christian has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8979840Abstract: Ablation electrode assemblies having a longitudinal axis include an electrode core member; an electrode shell; and an irrigant distribution element. The electrode core member comprises a thermal insulator and has a first end; a second end; and at least one irrigation passageway. The electrode shell comprises an electrically conductive material, defines an inner volume, and has a first end; and a second end. The second end of the electrode shell is configured for connection to the first end of the electrode core member. The electrode shell is sufficiently flexible for deflection of the distal end of the electrode shell relative to the longitudinal axis of the ablation electrode assembly. The irrigant distribution assembly comprises a first end; and a second end, wherein the second end of the irrigant distribution element defines a circumferential irrigation port between the irrigant distribution element and the electrode core member.Type: GrantFiled: June 16, 2011Date of Patent: March 17, 2015Assignee: St. Jude Medical, Atrial Fibrillation Division, Inc.Inventor: Steven C. Christian
-
Publication number: 20150011992Abstract: An irrigated ablation electrode assembly comprises a distal member, a first manifold, and a second manifold. The distal member includes an outer surface; an inner surface; and at least one radially extending passageway that extends from the inner surface of the distal member to the outer surface of the distal member. The first manifold includes an outer surface, an inner cavity, and at least one radially extending passageway that extends from the inner cavity to the outer surface of the first manifold. The second manifold includes an outer surface, an inner surface, and at least one radially extending passageway that extends from the inner surface of the second manifold to the outer surface of the second manifold. Other irrigated ablation electrode assemblies are also presented.Type: ApplicationFiled: July 9, 2014Publication date: January 8, 2015Inventor: Steven C. Christian
-
Publication number: 20140364848Abstract: A system for diagnosis or treatment of tissue in a body is provided. The system includes an ablation catheter having a deformable, elongate shaft having proximal and distal ends. The catheter further includes an ablation delivery member disposed proximate the distal end of the shaft and configured to deliver ablation energy to ablate the tissue. In one embodiment, the ablation delivery member comprises an ablation electrode and may also be configured to generate a signal indicative of electrical activity in the tissue. The catheter further includes one or more sensing electrodes disposed proximate the ablation delivery member. The sensing electrodes are configured to generate signals indicative of electrical activity in the tissue. The system further includes an electronic control unit configured to control delivery of ablation energy from the ablation delivery member responsive to one or more of the generated signals indicative of electrical activity in the tissue.Type: ApplicationFiled: December 27, 2012Publication date: December 11, 2014Inventors: Reed R. Heimbecher, Saurav Paul, Prathyusha Marri, Steven C. Christian, William M. Sutton, Paul H. Mcdowall
-
Publication number: 20140276078Abstract: A sensing assembly for sensing contact with an object is disclosed. The contact sensing assembly may comprise an elongate tubular body. An electrode may be connected to the elongate tubular body. A vibration element is operatively connected with the electrode and configured to deliver a vibration-inducing signal to induce vibration of the electrode. A sensor is configured to monitor the electrode for a perturbation in the induced vibration. The perturbation results from contact between the electrode and the object.Type: ApplicationFiled: March 17, 2014Publication date: September 18, 2014Applicant: St. Jude Medical, Atrial Fibrillation Division, Inc.Inventors: Jeffrey A. Schweitzer, Steven C. Christian, Anthony D. Hill
-
Patent number: 8814856Abstract: The disclosure describes a hand-held device that utilizes a mechanical lever system to operate the device with a single hand. The mechanical lever system is coupled to a sliding element within the housing of the hand-held device that slides linearly. The sliding element may be attached to another element that is extended, retracted, or rotated in or out of the device. For example, the hand-held device may be used for prostate ablation therapy. The hand-held device may include an ablation needle electrode that is extended out of a catheter and into a tissue of a patient by depressing an extension lever of the mechanical lever system to deliver ablation therapy. Depressing a retraction lever of the mechanical lever system may retract the needle electrode back into the catheter of the hand-held device. Other variations of the mechanical system and applications of the hand-held device are also described.Type: GrantFiled: April 30, 2007Date of Patent: August 26, 2014Assignee: Medtronic, Inc.Inventors: Ahmed Elmouelhi, Steven C. Christian
-
Patent number: 8814857Abstract: An irrigated ablation electrode assembly comprises a distal member, a first manifold, and a second manifold. The distal member includes an outer surface; an inner surface; and at least one radially extending passageway that extends from the inner surface of the distal member to the outer surface of the distal member. The first manifold includes an outer surface, an inner cavity, and at least one radially extending passageway that extends from the inner cavity to the outer surface of the first manifold. The second manifold includes an outer surface, an inner surface, and at least one radially extending passageway that extends from the inner surface of the second manifold to the outer surface of the second manifold. Other irrigated ablation electrode assemblies are also presented.Type: GrantFiled: December 17, 2010Date of Patent: August 26, 2014Assignee: St. Jude Medical, Atrial Filbrillation Division, Inc.Inventor: Steven C. Christian
-
Publication number: 20140163548Abstract: An ablation electrode assembly is provided with improved irrigation cooling of the assembly and ablation site. The assembly includes a proximal end configured to be coupled to a catheter shaft and a distal end configured to deliver ablation energy to tissue. The assembly further includes a fluid manifold extending from the proximal end to the distal end and configured to fluidly communicate with a fluid lumen in the catheter shaft. The fluid manifold defines an axial passageway centered about a longitudinal axis extending in the longitudinal direction of the assembly. The axial passageway has a distal end terminating prior to the distal end of the electrode assembly. The assembly further includes means for creating turbulence in fluid exiting the first axial passageway.Type: ApplicationFiled: December 6, 2012Publication date: June 12, 2014Inventor: Steven C. Christian
-
Patent number: 8734320Abstract: Suction-assisted tissue-engaging devices, systems, and methods are disclosed that can be employed through minimal surgical incisions to engage tissue during a medical procedure through application of suction to the tissue through a suction member applied to the tissue. A shaft is introduced into a body cavity through a first incision, and a suction head is attached to the shaft via a second incision. The suction head is applied against the tissue by manipulation of the shaft and suction is applied to engage the tissue while the medical procedure is performed through the second incision. A system coupled to the shaft and a fixed reference point stabilizes the shaft and suction head. When the medical procedure is completed, suction is discontinued, the suction head is detached from the shaft and withdrawn from the body cavity through the second incision, and the shaft is retracted through the first incision.Type: GrantFiled: March 28, 2013Date of Patent: May 27, 2014Assignee: Medtronic, Inc.Inventors: Philip J. Haarstad, Christopher P. Olig, Paul T. Rothstein, Michael J. Hobday, William A. Steinberg, David J. S. Kim, Thomas P. Daigle, Ann M. Thomas, Brian J. Ross, Steven C. Christian, Robert H. Reetz, Douglas H. Gubbin
-
Patent number: 8597288Abstract: Cardiac ablation systems include vacuum-stabilized, irrigated ablation devices that have ablating elements capable of providing regions of relatively low pressure to maintain the ablating element in a stable position relative to the tissue, or minimize relative movement of the ablating element relative to the tissue. The ablation elements have integrated structures for vacuum-stabilization. The devices also include one or more electrodes for both orienting the ablating element as well as for diagnostic purposes.Type: GrantFiled: March 20, 2009Date of Patent: December 3, 2013Assignee: St. Jude Medical, Artial Fibrillation Division, Inc.Inventor: Steven C. Christian
-
Publication number: 20130184727Abstract: Embodiments of the invention provide a vessel support system and a method of vessel harvesting. The system can include a cutting device, a catheter adapted to be inserted into a section of the vessel in order to support the vessel as the cutting device is advanced over the vessel, and a cannula adapted to be coupled to the vessel and adapted to receive the catheter as the catheter is inserted into the section of the vessel. The method can include orienting a cutting device coaxially with the cannula and the catheter and advancing the cutting device over the cannula, the catheter, and the section of the vessel in order to core out the section of the vessel and a portion of the surrounding tissue.Type: ApplicationFiled: October 16, 2007Publication date: July 18, 2013Applicant: SCOTTSDALE MEDICAL DEVICES, INC.Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Jolly, Ana R. Menk, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Thomas P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns, Philip J. Haarstad
-
Patent number: 8480696Abstract: The invention provides a system and method for harvesting a vessel section. The system comprises a vessel support member, a handle, and a tubular cutting device. The vessel support member is introduced into the vessel section to be harvested. The tubular cutting device may comprise an outer tubular member or an outer and an inner tubular member. The outer tubular member carries at least one cutting element. The tubular member or members are advanced over the vessel section and vessel support member to core out the vessel section and tissue adjoining the vessel section.Type: GrantFiled: June 16, 2005Date of Patent: July 9, 2013Assignee: Medtronic, Inc.Inventors: Cynthia T. Clague, Michael J. Hobday, Raymond W. Usher, Roderick E. Briscoe, Katherine S. Jolly, Ana R. Buhr, Christopher P. Olig, Eric A. Meyer, Steven C. Christian, Tom P. Daigle, Robert H. Reetz, Jeffrey D. Sandstrom, James R. Keogh, Matthew D. Bonner, Scott E. Jahns
-
Patent number: 8449449Abstract: Suction-assisted tissue-engaging devices, systems, and methods are disclosed that can be employed through minimal surgical incisions to engage tissue during a medical procedure through application of suction to the tissue through a suction member applied to the tissue. A shaft is introduced into a body cavity through a first incision, and a suction head is attached to the shaft via a second incision. The suction head is applied against the tissue by manipulation of the shaft and suction is applied to engage the tissue while the medical procedure is performed through the second incision. A system coupled to the shaft and a fixed reference point stabilizes the shaft and suction head. When the medical procedure is completed, suction is discontinued, the suction head is detached from the shaft and withdrawn from the body cavity through the second incision, and the shaft is retracted through the first incision.Type: GrantFiled: December 8, 2008Date of Patent: May 28, 2013Assignee: Medtronic, Inc.Inventors: Philip J. Haarstad, Christopher P. Olig, Paul T. Rothstein, Michael J. Hobday, William A. Steinberg, David J. S. Kim, Thomas P. Daigle, Ann M. Thomas, Brian J. Ross, Steven C. Christian, Robert H. Reetz, Douglas H. Gubbin
-
Publication number: 20120165812Abstract: A system for providing irrigation fluid during ablation of tissue includes a catheter, an electrode assembly, at least one thermal sensor adapted to be connected to the catheter, and a control system. The electrode assembly is adapted to be connected to an ablation generator. The thermal sensor is adapted to be operatively connected to an electronic control unit (ECU). The ECU receives as an input temperature measurement data from the thermal sensor; determines a power delivery rate value for the ablation generator responsive to the temperature measurement data; and outputs the power delivery rate value. The control system also delivers irrigation fluid to the irrigated catheter at a first flow rate in a first time period and at a second flow rate in a second time period that is temporally after the first time period. The second flow rate is at least half of the first flow rate.Type: ApplicationFiled: June 2, 2011Publication date: June 28, 2012Inventor: Steven C. Christian
-
Publication number: 20120165809Abstract: Ablation electrode assemblies include an inner core member and an outer shell surrounding the inner core member. The inner core member and the outer shell define a space or separation region therebetween. The inner core member is constructed from a thermally insulative material having a reduced thermal conductivity. In an embodiment, the space is a sealed or evacuated region. In other embodiments, irrigation fluid flows within the space. The ablation electrode assembly further includes at least one thermal sensor in some embodiments. Methods for providing irrigation fluid during cardiac ablation of targeted tissue are disclosed that include calculating the energy delivered to irrigation fluid as it flows within the ablation electrode assembly through temperature measurement of the irrigation fluid. Pulsatile flow of irrigation fluid can be utilized in some embodiments of the disclosure.Type: ApplicationFiled: December 28, 2010Publication date: June 28, 2012Inventors: Steven C. Christian, Reed R. Heimbecher
-
Publication number: 20120157991Abstract: Ablation electrode assemblies having a longitudinal axis include an electrode core member; an electrode shell; and an irrigant distribution element. The electrode core member comprises a thermal insulator and has a first end; a second end; and at least one irrigation passageway. The electrode shell comprises an electrically conductive material, defines an inner volume, and has a first end; and a second end. The second end of the electrode shell is configured for connection to the first end of the electrode core member. The electrode shell is sufficiently flexible for deflection of the distal end of the electrode shell relative to the longitudinal axis of the ablation electrode assembly. The irrigant distribution assembly comprises a first end; and a second end, wherein the second end of the irrigant distribution element defines a circumferential irrigation port between the irrigant distribution element and the electrode core member.Type: ApplicationFiled: June 16, 2011Publication date: June 21, 2012Inventor: Steven C. Christian
-
Publication number: 20120157990Abstract: An irrigated ablation electrode assembly comprises a distal member, a first manifold, and a second manifold. The distal member includes an outer surface; an inner surface; and at least one radially extending passageway that extends from the inner surface of the distal member to the outer surface of the distal member. The first manifold includes an outer surface, an inner cavity, and at least one radially extending passageway that extends from the inner cavity to the outer surface of the first manifold. The second manifold includes an outer surface, an inner surface, and at least one radially extending passageway that extends from the inner surface of the second manifold to the outer surface of the second manifold. Other irrigated ablation electrode assemblies are also presented.Type: ApplicationFiled: December 17, 2010Publication date: June 21, 2012Inventor: Steven C. Christian
-
Publication number: 20120123326Abstract: Systems capable of providing force and displacement outputs sufficient to actuate remote mechanisms to enhance catheter capabilities include both low-force and remote actuation arrangements. The remote actuation and low-force actuation systems may be used for catheter distal end deflection, sensor deployment, feedback controlled movement, fluid delivery rate and directional control applications as well as catheter retention mechanism deployment. Remote actuation mechanism may employ phase change based, magnetic based or hydraulic based. Low-force remote actuation structures include a coaxially-extending pull wire, a reaction member, and a remote mechanism responsive to the pull force.Type: ApplicationFiled: April 21, 2011Publication date: May 17, 2012Inventors: Steven C. Christian, Jeffrey A. Schweitzer
-
Patent number: 8172837Abstract: Method and apparatus for ablating target tissue adjacent pulmonary veins of a patient. A clamping ablation tool can include an upper arm having an upper neck, a link assembly, and an upper actuator. The link assembly can include a distal electrode and a proximal electrode. The clamping ablation tool can include a lower arm that mates with the upper arm. The lower arm can include a lower neck, a distal jaw, and a lower actuator. The distal jaw can include a jaw electrode, and the lower actuator can control movement of the distal jaw.Type: GrantFiled: June 14, 2010Date of Patent: May 8, 2012Assignee: Medtronic, Inc.Inventors: Paul T. Rothstein, David E. Francischelli, Terri Jean Cormack, Tom P. Daigle, Alison Lutterman, Roderick E. Briscoe, Steven C. Christian
-
Patent number: 8162941Abstract: System, device and method for ablating target tissue adjacent pulmonary veins of a patient through an incision. An ablation device can include a hinge including a cam assembly, a moving arm, a floating jaw, and a lower jaw. Fingers can engage the floating jaw to hold the floating jaw in a first position with respect to the moving arm. Some embodiments of the invention can provide an ablation device including a central support, an upper four-bar linkage coupled to the central support, an upper jaw coupled to the upper linkage, a lower four-bar linkage coupled to the central support, and a lower jaw coupled to the lower linkage. Some embodiments of the invention can provide an ablation device having an upper jaw including a first cannula connection and a lower jaw including a second cannula connection. The system can include a first catheter coupled to the first cannula connection and a second catheter coupled to the second cannula connection.Type: GrantFiled: December 20, 2010Date of Patent: April 24, 2012Assignee: Medtronic, Inc.Inventors: Steven C. Christian, Paul T. Rothstein, Tom P. Daigle
-
Patent number: 8025620Abstract: Tissue stabilizers including a clamp assembly, a turret assembly, an articulating arm having a tension element extending therethrough, a collet assembly and a head-link assembly are disclosed. Methods of stabilizing tissue are also disclosed.Type: GrantFiled: August 3, 2010Date of Patent: September 27, 2011Assignee: Medtronic, Inc.Inventors: Andrew L. Olson, Michael J. Hobday, Steven C. Christian, Tom P. Daigle, Robert H. Reetz, Douglas H. Gubbin, Roderick E. Briscoe, William A. Steinberg, Adam A. Podbelski, Christopher J. Plott, Patrick J. Cloutier, Gerard C. Forest, Christopher P. Olig