Patents by Inventor Steven C. Dimmer

Steven C. Dimmer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120016363
    Abstract: Systems, delivery devices, and methods to treat to ablate, damage, or otherwise affect tissue. The treatment systems are capable of delivering a coolable ablation assembly that ablates targeted tissue without damaging non-targeted tissue. The coolable ablation assembly damages nerve tissue to temporarily or permanently decrease nervous system input.
    Type: Application
    Filed: September 26, 2011
    Publication date: January 19, 2012
    Applicant: Innovative Pulmonary Solutions, Inc.
    Inventors: Martin L. Mayse, Steven C. Dimmer
  • Patent number: 8095203
    Abstract: A facility for processing data is described. The facility receives a stream of digital location indications, each location indication identifying a location of a patient while undergoing radiation therapy. In response to each location indication of the string, in substantially real-time relative to the receipt of the position indication, the facility performs an action responsive to the location indication.
    Type: Grant
    Filed: July 25, 2005
    Date of Patent: January 10, 2012
    Assignee: Varian Medical Systems, Inc.
    Inventors: J. Nelson Wright, Steven C. Dimmer, Stephen C. Phillips, Ryan K. Seghers
  • Patent number: 8088127
    Abstract: Systems, assemblies, and methods to treat pulmonary diseases are used to decrease nervous system input to distal regions of the bronchial tree within the lungs. Treatment systems damage nerve tissue to temporarily or permanently decrease nervous system input. The treatment systems are capable of heating nerve tissue, cooling the nerve tissue, delivering a flowable substance that cause trauma to the nerve tissue, puncturing the nerve tissue, tearing the nerve tissue, cutting the nerve tissue, applying pressure to the nerve tissue, applying ultrasound to the nerve tissue, applying ionizing radiation to the nerve tissue, disrupting cell membranes of nerve tissue with electrical energy, or delivering long acting nerve blocking chemicals to the nerve tissue.
    Type: Grant
    Filed: May 8, 2009
    Date of Patent: January 3, 2012
    Assignee: Innovative Pulmonary Solutions, Inc.
    Inventors: Martin L. Mayse, Steven C. Dimmer
  • Publication number: 20110308016
    Abstract: An apparatus for supporting a patient in radiation therapy and other applications. In one embodiment, the apparatus includes a support structure and a panel carried by the support structure. The support structure can have first and second support members, such as rigid girders or other structures comprising substantially dielectric materials. The panel is also a rigid structure comprising substantially dielectric materials. The panel can further include a pass-through zone or other type of zone that is compatible with an ionizing radiation beam. For example, the panel can have a grid or solid low-density structure that mitigates beam contamination. The support structure and the panel together are configured to position a magnetic marker implanted in the patient in a navigational zone in which a magnetic field transmitted from the marker is not affected by conductive components or loops of conductive material in the pedestals or cantilevered support structures of conventional patient support systems.
    Type: Application
    Filed: August 24, 2011
    Publication date: December 22, 2011
    Applicant: Calypso Medical Technologies, Inc.
    Inventors: Steven C. Dimmer, Matthew A. Herron, Edward J. Vertatschitsch
  • Publication number: 20110257647
    Abstract: Systems, assemblies, and methods to treat pulmonary diseases are used to decrease nervous system input to distal regions of the bronchial tree within the lungs. Treatment systems damage nerve tissue to temporarily or permanently decrease nervous system input. The treatment systems are capable of heating nerve tissue, cooling the nerve tissue, delivering a flowable substance that cause trauma to the nerve tissue, puncturing the nerve tissue, tearing the nerve tissue, cutting the nerve tissue, applying pressure to the nerve tissue, applying ultrasound to the nerve tissue, applying ionizing radiation to the nerve tissue, disrupting cell membranes of nerve tissue with electrical energy, or delivering long acting nerve blocking chemicals to the nerve tissue.
    Type: Application
    Filed: June 24, 2011
    Publication date: October 20, 2011
    Applicant: Innovative Pulmonary Solutions, Inc.
    Inventors: Martin L. Mayse, Steven C. Dimmer
  • Publication number: 20110249880
    Abstract: Medical imaging and localization methods and systems for producing a motion-compensated image of a planning target volume (PTV) of a patient. In one embodiment, an imaging and localization system includes sensors that are positioned to receive an electromagnetic location signal from one or more active markers affixed to or adjacent a PTV. A signal processing component can produce real-time localization data corresponding to the location signal, and a system interface can receive such localization data. The system interface can also receive raw image data from an imaging subsystem and process the raw image data based on the localization data. For example, the imaging subsystem can include a computed tomography (CT) imaging system and image slices or frames can be binned based on the localization data.
    Type: Application
    Filed: June 5, 2009
    Publication date: October 13, 2011
    Inventors: Parag J. Parikh, Steven C. Dimmer
  • Patent number: 8020227
    Abstract: An apparatus for supporting a patient in radiation therapy and other applications. In one embodiment, the apparatus includes a support structure and a panel carried by the support structure. The support structure can have first and second support members, such as rigid girders or other structures comprising substantially dielectric materials. The panel is also a rigid structure comprising substantially dielectric materials. The panels can further include a pass-through zone or other type of zone that is compatible with an ionizing radiation beam. For example, the panel can have a grid or solid low-density structure that mitigates beam contamination. The support structure and the panel together are configured to position a magnetic marker implanted in the patient in a navigational zone in which a magnetic field transmitted from the marker is not affected by conductive components or loops of conductive material in the pedestals or cantilevered support structures of conventional patient systems.
    Type: Grant
    Filed: October 18, 2004
    Date of Patent: September 20, 2011
    Assignee: Calypso Medical Technologies, Inc.
    Inventors: Steven C. Dimmer, Matthew A. Herron, Edward J. Vertatschitsch
  • Publication number: 20110152855
    Abstract: Systems, delivery devices, and methods to treat to ablate, damage, or otherwise affect tissue. The treatment systems are capable of delivering a coolable ablation assembly that ablates targeted tissue without damaging non-targeted tissue. The coolable ablation assembly damages nerve tissue to temporarily or permanently decrease nervous system input.
    Type: Application
    Filed: October 27, 2010
    Publication date: June 23, 2011
    Inventors: Martin L. Mayse, Steven C. Dimmer
  • Publication number: 20110130655
    Abstract: Implantable devices and methods for external beam radiation treatments are disclosed. One embodiment of an implantable device for guided radiation therapy comprises an active marker configured to be positioned within the patient and to transmit a non-ionizing wireless signal in response to a non-ionizing wirelessly transmitted source energy. The device further includes a fastening unit coupled to the active marker and configured to (a) hold the marker within a desired distance of a target in the tissue and (b) inhibit deformation of tissue from moving the active marker relative to the target.
    Type: Application
    Filed: November 30, 2010
    Publication date: June 2, 2011
    Inventors: Eric D. Nielson, Steven C. Dimmer, David N. Krag, Timothy P. Mate, Roland Perez, Fergus Quigley
  • Publication number: 20110118725
    Abstract: A system and method can be used to denervate at least a portion of a bronchial tree. An energy emitter of an instrument is percutaneously delivered to a treatment site and outputs energy to damage nerve tissue of the bronchial tree. The denervation procedure can be performed without damaging non-targeted tissue. Minimally invasive methods can be used to open airways to improve lung function in subjects with COPD, asthma, or the like. Different sections of the bronchial tree can be denervated while leaving airways intact to reduce recovery times.
    Type: Application
    Filed: November 11, 2010
    Publication date: May 19, 2011
    Inventors: Martin L. Mayse, Steven C. Dimmer
  • Publication number: 20110046481
    Abstract: A system and method for accurately locating and tracking the position of a target, such as a tumor or the like, within a body. In one embodiment, the system is a target locating and monitoring system usable with a radiation delivery source that delivers a selected doses of radiation to a target in a body. The system includes one or more excitable beacons positionable in or near the target, an external excitation source that remotely excites the beacons to produce an identifiable signal, and a plurality of sensors spaced apart in a known geometry relative to each other. A computer is coupled to the sensors and configured to use the beacon measurements to identify a target isocenter within the target. The computer compares the position of the target isocenter with the location of the machine isocenter. The computer also controls movement of the patient and a patient support device so the target isocenter is coincident with the machine isocenter before and during radiation therapy.
    Type: Application
    Filed: September 27, 2010
    Publication date: February 24, 2011
    Applicant: Calypso Medical Technologies, Inc.
    Inventors: Timothy P. Mate, Steven C. Dimmer
  • Publication number: 20100317968
    Abstract: Systems and methods for tracking targets in real time for radiation therapy and other applications. In one embodiment, a method includes collecting position information of a marker implanted within a patient at a site relative to the target at a time tn, and providing an objective output indicative of the location of the target based on the position information collected at time tn. The objective output is provided to a memory device, user interface, and/or radiation delivery machine within 1 ms to 2 seconds of the time tn when the position information was collected. This embodiment of the method can further include providing the objective output at a periodicity of 10-200 ms during at least a portion of a treatment procedure.
    Type: Application
    Filed: January 8, 2010
    Publication date: December 16, 2010
    Inventors: J. Nelson Wright, Steven C. Dimmer
  • Publication number: 20100298858
    Abstract: Apparatus and methods for external beam radiation treatments of resection cavities are described. One embodiment of such an apparatus comprises a stabilization device having an expandable member configured to (a) be implanted in a patient and (b) move from a first position for insertion into a resection cavity within the patient to a second position for stabilizing tissue of the cavity. The apparatus further includes an active marker coupled to the stabilization device and an electrically conductive line connected to the active marker. The active marker is configured to transmit a signal. The electrically conductive line has an internal portion coupled to the stabilization device and an external portion configured to be coupled to a signal generator and/or a signal processor located outside of the patient.
    Type: Application
    Filed: June 19, 2008
    Publication date: November 25, 2010
    Inventors: Steven C. Dimmer, Fergus Quigley, Eric D. Nielson
  • Patent number: 7778687
    Abstract: A leadless marker for localizing the position of a target within a patient. In one embodiment, the marker includes a casing, a resonating circuit, and a ferromagnetic element. The casing is configured to be positioned at a selected location relative to a target site in the patient; the casing, for example, can be configured to be permanently or semi-permanently implanted into the patient. The resonating circuit has an inductor within the casing comprising a plurality of windings of a conductor, but it does not have external electrical lead lines extending through the casing. The ferromagnetic element is at least partially within the inductor. The ferromagnetic element has a volume such that when the marker is in an imaging magnetic field having a field strength of 1.5 T and a gradient of 3 T/m, then the force exerted on the marker by the imaging magnetic field is not greater than gravitational force exerted on the marker.
    Type: Grant
    Filed: December 23, 2003
    Date of Patent: August 17, 2010
    Assignee: Calypso Medical Technologies, Inc.
    Inventors: Steven C. Dimmer, Eric Hadford
  • Patent number: 7696876
    Abstract: A system for generating a magnetic field for excitation of a leadless marker assembly. The system of at least one embodiment includes a source generator that generates a plurality of alternating electrical signals each having an independently adjustable phase. A plurality of excitation coils are configured to simultaneously receive a respective one of the alternating electrical signals at a selected phase to generate a magnetic field. The phase of the alternating electrical signal for each excitation coil is independently adjustable relative to the phase of the alternating electrical signal for the other excitation coils so as to adjust the magnetic field from the respective coil. The magnetic fields from the excitation coils combine to form a spatially adjustable excitation field for excitation of the remote leadless marker assembly.
    Type: Grant
    Filed: January 26, 2007
    Date of Patent: April 13, 2010
    Assignee: Calypso Medical Technologies, Inc.
    Inventors: Steven C. Dimmer, J. Nelson Wright, William T. Mayo
  • Publication number: 20100036241
    Abstract: Apparatuses and methods for implanting objects, such as a marker, in the lungs of patients. In one embodiment, a bronchoscopic catheter assembly for implanting an object in the lung of a patient includes a handle, a delivery catheter projecting outwardly from the handle, and a push wire contained within the catheter In one aspect of this embodiment, the catheter can be configured to releasably hold a plurality of markers at a distal end. In another aspect of this embodiment, the push wire can be operably connected to the handle and axially moveable within the delivery catheter to eject the marker out of the catheter within the bronchi of the patient. In a further aspect of this embodiment, the marker can further include an anti-migration device associated with the marker for holding the marker in place once the marker is deployed in the bronchi. The anti-migration device can be integral with the marker or positioned proximate to the marker to prevent migration of the marker.
    Type: Application
    Filed: September 19, 2006
    Publication date: February 11, 2010
    Applicant: Calypso Medical Technologies, Inc.
    Inventors: Martin L. Mayse, Steven C. Dimmer, Roger Hildwein, Eric D. Nielson
  • Patent number: 7657301
    Abstract: A system and method for accurately locating and tracking the position of a target, such as a tumor or the like, within a body. In one embodiment, the system is a target locating and monitoring system usable with a radiation delivery source that delivers selected doses of radiation to a target in a body. The system includes one or more excitable markers positionable in or near the target, an external excitation source that remotely excites the markers to produce an identifiable signal, and a plurality of sensors spaced apart in a known geometry relative to each other. A computer is coupled to the sensors and configured to use the marker measurements to identify a target isocenter within the target. The computer compares the position of the target isocenter with the location of the machine isocenter. The computer also controls movement of the patient and a patient support device so the target isocenter is coincident with the machine isocenter before and during radiation therapy.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: February 2, 2010
    Assignee: Calypso Medical Technologies, Inc.
    Inventors: Timothy P. Mate, Steven C. Dimmer
  • Patent number: 7657303
    Abstract: A system and method for accurately locating and tracking the position of a target, such as a tumor or the like, within a body. In one embodiment, the system is a target locating and monitoring system usable with a radiation delivery source that delivers selected doses of radiation to a target in a body. The system includes one or more excitable markers positionable in or near the target, an external excitation source that remotely excites the markers to produce an identifiable signal, and a plurality of sensors spaced apart in a known geometry relative to each other. A computer is coupled to the sensors and configured to use the marker measurements to identify a target isocenter within the target. The computer compares the position of the target isocenter with the location of the machine isocenter. The computer also controls movement of the patient and a patient support device so the target isocenter is co-incident with the machine isocenter before and during radiation therapy.
    Type: Grant
    Filed: December 22, 2003
    Date of Patent: February 2, 2010
    Assignee: Calypso Medical Technologies, Inc.
    Inventors: Timothy P. Mate, Steven C. Dimmer
  • Patent number: 7657302
    Abstract: A system and method for accurately locating and tracking the position of a target, such as a tumor or the like, within a body. In one embodiment, the system is a target locating and monitoring system usable with a radiation delivery source that delivers selected doses of radiation to a target in a body. The system includes one or more excitable markers positionable in or near the target, an external excitation source that remotely excites the markers to produce an identifiable signal, and a plurality of sensors spaced apart in a known geometry relative to each other. A computer is coupled to the sensors and configured to use the marker measurements to identify a target isocenter within the target. The computer compares the position of the target isocenter with the location of the machine isocenter. The computer also controls movement of the patient and a patient support device so the target isocenter is coincident with the machine isocenter before and during radiation therapy.
    Type: Grant
    Filed: November 25, 2003
    Date of Patent: February 2, 2010
    Assignee: Calypso Medical Technologies, Inc.
    Inventors: Timothy P. Mate, Steven C. Dimmer
  • Publication number: 20090306728
    Abstract: Instruments and method of using instruments for implanting electrodes into a patient. The instrument can include a body configured to be implanted into a patient, an electrode contact carried by the body, and a marker carried by the body. The electrode contact has an electrically conductive surface exposed at a location along the body to sense electrical activity and/or deliver electrical stimulation to the target neural structure. The marker can include a transponder configured to be energized by a wirelessly transmitted excitation energy and to wirelessly transmit a location signal in response to the excitation energy. The instrument is tracked as it is implanted into the patient by time multiplexing the wirelessly transmitted excitation energy and the location signal such that the absolute location of the marker can be determined in real time.
    Type: Application
    Filed: January 12, 2005
    Publication date: December 10, 2009
    Applicant: CALYPSO MEDICAL TECHNOLOGIES, INC.
    Inventors: J. Nelson Wright, Steven C. Dimmer