Patents by Inventor Steven C. Erwin

Steven C. Erwin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230332044
    Abstract: Methods of fabricating nanocrystals are disclosed. Such methods may include providing copper sulfide core nanocrystals and providing a lead precursor. Moreover, the copper sulfide core nanocrystals may be reacted with the lead precursor to generate copper doped lead sulfide nanocrystals. Related nanocrystals and optoelectronic devices are also disclosed.
    Type: Application
    Filed: May 4, 2023
    Publication date: October 19, 2023
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Patrick Y. Yee, Sarah F. Brittman, Paul D. Cunningham, Janice E. Boercker, Katherine D. Burgess, Rhonda M. Stroud, Steven C. Erwin
  • Patent number: 11732186
    Abstract: A process for synthesizing Cu2-xS/PbS core/shell nanocrystals. Pb-oleate is mixed with 1-octadecene and heated to 60° C. Cu2-xS core solution and bis(trimethylsilyl)sulfide stock solution are added and the mixture is stirred at 60° C. for 6 minutes to form the PbS shell around the Cu2-xS nanocrystal cores. The flask is cooled and acetonitrile and toluene is added and the mixture is centrifuged to precipitate and remove the Cu2-xS/PbS core/shell nanocrystals from the reaction mixture. The reaction also produces homogeneously nucleated PbS nanocrystals, which are removed from the Cu2-xS/PbS core/shell reaction mixture via size-selective precipitation. By tailoring the amounts of Pb-oleate and bis(trimethylsilyl)sulfide stock solution in the reaction vessel, while maintaining their molar ratio of 1.5:1 and the number of Cu2-xS cores in the reaction, Cu2-xS/PbS core/shell nanocrystals having a predetermined shell thickness of PbS, and thus a predetermined level of chemical stability, can be obtained.
    Type: Grant
    Filed: April 23, 2021
    Date of Patent: August 22, 2023
    Assignee: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Janice E. Boercker, Sarah F. Brittman, Joseph G. Tischler, Patrick Y. Yee, Chase T. Ellis, Paul D. Cunningham, Rhonda M. Stroud, Michael H. Stewart, Steven C. Erwin
  • Publication number: 20210332291
    Abstract: A process for synthesizing Cu2-xS/PbS core/shell nanocrystals. Pb-oleate is mixed with 1-octadecene and heated to 60° C. Cu2-xS core solution and bis(trimethylsilyl)sulfide stock solution are added and the mixture is stirred at 60° C. for 6 minutes to form the PbS shell around the Cu2-xS nanocrystal cores. The flask is cooled and acetonitrile and toluene is added and the mixture is centrifuged to precipitate and remove the Cu2-xS/PbS core/shell nanocrystals from the reaction mixture. The reaction also produces homogeneously nucleated PbS nanocrystals, which are removed from the Cu2-xS/PbS core/shell reaction mixture via size-selective precipitation. By tailoring the amounts of Pb-oleate and bis(trimethylsilyl)sulfide stock solution in the reaction vessel, while maintaining their molar ratio of 1.5:1 and the number of Cu2-xS cores in the reaction, Cu2-xS/PbS core/shell nanocrystals having a predetermined shell thickness of PbS, and thus a predetermined level of chemical stability, can be obtained.
    Type: Application
    Filed: April 23, 2021
    Publication date: October 28, 2021
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Janice E. Boercker, Sarah F. Brittman, Joseph G. Tischler, Patrick Y. Yee, Chase T. Ellis, Paul D. Cunningham, Rhonda M. Stroud, Michael H. Stewart, Steven C. Erwin
  • Patent number: 9806209
    Abstract: A passivated iron disulfide (FeS2) surface encapsulated by an epitaxial zinc sulfide (ZnS) capping layer or matrix is provided. Also disclosed are methods for passivating the surface of crystalline iron disulfide by encapsulating it with an epitaxial zinc sulfide capping layer or matrix. Additionally disclosed is a photovoltaic (PV) device incorporating FeS2 encapsulated by ZnS.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: October 31, 2017
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Jason D. Myers, Colin C. Baker, Jasbinder S. Sanghera, Steven C. Erwin
  • Patent number: 9806208
    Abstract: A method for passivating the surface of crystalline iron disulfide (FeS2) by encapsulating it within an epitaxial zinc sulfide (ZnS) matrix. Also disclosed is the related product comprising FeS2 encapsulated by a ZnS matrix in which the sulfur atoms at the FeS2 surfaces are passivated. Additionally disclosed is a photovoltaic (PV) device incorporating FeS2 encapsulated by a ZnS matrix.
    Type: Grant
    Filed: June 7, 2017
    Date of Patent: October 31, 2017
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Jason D. Myers, Colin C. Baker, Jasbinder S. Sanghera, Steven C. Erwin
  • Publication number: 20170271531
    Abstract: A method for passivating the surface of crystalline iron disulfide (FeS2) by encapsulating it within an epitaxial zinc sulfide (ZnS) matrix. Also disclosed is the related product comprising FeS2 encapsulated by a ZnS matrix in which the sulfur atoms at the FeS2 surfaces are passivated. Additionally disclosed is a photovoltaic (PV) device incorporating FeS2 encapsulated by a ZnS matrix.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Inventors: Jesse A. Frantz, Jason D. Myers, Colin C. Baker, Jasbinder S. Sanghera, Steven C. Erwin
  • Publication number: 20170271532
    Abstract: A passivated iron disulfide (FeS2) surface encapsulated by an epitaxial zinc sulfide (ZnS) capping layer or matrix is provided. Also disclosed are methods for passivating the surface of crystalline iron disulfide by encapsulating it with an epitaxial zinc sulfide capping layer or matrix. Additionally disclosed is a photovoltaic (PV) device incorporating FeS2 encapsulated by ZnS.
    Type: Application
    Filed: June 7, 2017
    Publication date: September 21, 2017
    Inventors: Jesse A. Frantz, Jason D. Myers, Colin C. Baker, Jasbinder S. Sanghera, Steven C. Erwin
  • Patent number: 9705012
    Abstract: A method for passivating the surface of crystalline iron disulfide (FeS2) by encapsulating it in crystalline zinc sulfide (ZnS). Also disclosed is the related product comprising FeS2 encapsulated by ZnS in which the sulfur atoms at the FeS2 surfaces are passivated. Additionally disclosed is a photovoltaic (PV) device incorporating FeS2 encapsulated by ZnS.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: July 11, 2017
    Assignee: The United States of America, as Represented by the Secretary of the Navy
    Inventors: Jesse A. Frantz, Jason D. Myers, Colin C. Baker, Jasbinder S. Sanghera, Steven C. Erwin
  • Publication number: 20150270412
    Abstract: A method for passivating the surface of crystalline iron disulfide (FeS2) by encapsulating it in crystalline zinc sulfide (ZnS). Also disclosed is the related product comprising FeS2 encapsulated by ZnS in which the sulfur atoms at the FeS2 surfaces are passivated. Additionally disclosed is a photovoltaic (PV) device incorporating FeS2 encapsulated by ZnS.
    Type: Application
    Filed: March 18, 2015
    Publication date: September 24, 2015
    Inventors: Jesse A. Frantz, Jason D. Myers, Colin C. Baker, Jasbinder S. Sanghera, Steven C. Erwin