Patents by Inventor Steven C. Hayden

Steven C. Hayden has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11827647
    Abstract: Compositions, devices, and methods relating to the use of mixed-matrix membranes containing metal-organic frameworks to separate gases are generally described. In some embodiments, branched nanoparticles made at least in part of metal-organic frameworks are described. In some embodiments, the morphology and size of the branched nanoparticles are controlled by the presence of a chemical modulator during synthesis. In some embodiments, the branched nanoparticles are uniformly distributed in a mixed-matrix membrane. In some embodiments, the mixed-matrix membrane is configured to separate one or more gases from a gas mixture. In some embodiments, the branched nanoparticles contribute at least in part to an increase in permeability, selectivity, and/or resistance to plasticization of the mixed-matrix membrane.
    Type: Grant
    Filed: June 11, 2019
    Date of Patent: November 28, 2023
    Assignees: Massachusetts Institute of Technology, Aramco Services Company
    Inventors: Zachary Smith, Lucas Chi, Benjamin James Sundell, Ke Zhang, Steven C. Hayden, Daniel J. Harrigan, Hyunhee Lee
  • Patent number: 11035836
    Abstract: Embodiments of methods for producing and testing aqueous gas streams within a self-pressurized flow cell are disclosed. The aqueous gas streams comprise mixtures of aqueous salt precursor and aqueous acid precursor that are mixed in-line and introduced to the self-pressurized flow cell to produce aqueous gases. Once in the self-pressurized flow cell, the precursor mixture formed from the mixed aqueous salt precursor and the aqueous acid precursor may react with the sample. Both the sample and the reacted aqueous solution may be subjected to a variety of real-time tests, such electrochemical tests and in line characterization techniques. These embodiments allow for the concentrations of the aqueous salt precursor and the aqueous acid precursor to be accurately and precisely maintained while allowing for increased safety when handling and testing the various toxic aqueous gas streams produced.
    Type: Grant
    Filed: July 31, 2018
    Date of Patent: June 15, 2021
    Assignee: Saudi Arabian Oil Company
    Inventors: Steven C. Hayden, Timothy J. Kucharski, Michele L. Ostraat, Rachael O. Grudt, James P. Mullahoo
  • Publication number: 20210129088
    Abstract: Compositions, devices, and methods relating to the use of mixed-matrix membranes containing metal-organic frameworks to separate gases are generally described. In some embodiments, branched nanoparticles made at least in part of metal-organic frameworks are described. In some embodiments, the morphology and size of the branched nanoparticles are controlled by the presence of a chemical modulator during synthesis. In some embodiments, the branched nanoparticles are uniformly distributed in a mixed-matrix membrane. In some embodiments, the mixed-matrix membrane is configured to separate one or more gases from a gas mixture. In some embodiments, the branched nanoparticles contribute at least in part to an increase in permeability, selectivity, and/or resistance to plasticization of the mixed-matrix membrane.
    Type: Application
    Filed: June 11, 2019
    Publication date: May 6, 2021
    Applicants: Massachusetts Institute of Technology, Aramco Services Company
    Inventors: Zachary Smith, Lucas Chi, Benjamin James Sundell, Ke Zhang, Steven C. Hayden, Daniel J. Harrigan, Hyunhee Lee
  • Publication number: 20200041473
    Abstract: Embodiments of methods for producing and testing aqueous gas streams within a self-pressurized flow cell are disclosed. The aqueous gas streams comprise mixtures of aqueous salt precursor and aqueous acid precursor that are mixed in-line and introduced to the self-pressurized flow cell to produce aqueous gases. Once in the self-pressurized flow cell, the precursor mixture formed from the mixed aqueous salt precursor and the aqueous acid precursor may react with the sample. Both the sample and the reacted aqueous solution may be subjected to a variety of real-time tests, such electrochemical tests and in line characterization techniques. These embodiments allow for the concentrations of the aqueous salt precursor and the aqueous acid precursor to be accurately and precisely maintained while allowing for increased safety when handling and testing the various toxic aqueous gas streams produced.
    Type: Application
    Filed: July 31, 2018
    Publication date: February 6, 2020
    Applicant: Saudi Arabian Oil Company
    Inventors: Steven C. Hayden, Timothy J. Kucharski, Michele L. Ostraat, Rachael O. Grudt, James P. Mullahoo