Patents by Inventor Steven C. Nardone

Steven C. Nardone has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6304833
    Abstract: A method for the selection of hypotheses for modeling physical phenomena, includes detecting if selected features are present by analyzing actual sensed data and parameter values of an initial physical phenomena model; comparing feature estimating hypotheses to the actual data for determining a belief probability assignment value (bpa) for each of the hypotheses which indicates the likelihood that the selected features exist in the actual data and the likelihood that such selected features cannot accurately be determined as existing due to the presence of noise; selecting a set of the hypotheses most accurately modeling the physical phenomena based on the bpa of each selected hypotheses meeting a predetermined criteria; generating evidential support values and lack of evidential support values for subsets of the set having non-zero subset bpa's; ranking the subsets having non-zero subset bpa's in order of decreasing subset bpa; unioning subsets of the power set for forming unioned subsets and determ
    Type: Grant
    Filed: April 27, 1999
    Date of Patent: October 16, 2001
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: David J. Ferkinhoff, Sherry E. Hammel, Kai F. Gong, Steven C. Nardone
  • Patent number: 5781460
    Abstract: A chaotic signal processing system receives an input signal provided by a nsor in a chaotic environment and performs a processing operation in connection therewith to provide an output useful in identifying one of a plurality of chaotic processes in the chaotic environment. The chaotic signal processing system comprises an input section, a processing section and a control section. The input section is responsive to input data selection information for providing a digital data stream selectively representative of the input signal provided by the sensor or a synthetic input representative of a selected chaotic process. The processing section includes a plurality of processing modules each for receiving the digital data stream from the input means and for generating therefrom an output useful in identifying one of a plurality of chaotic processes. The processing section is responsive to processing selection information to select one of the plurality of processing modules to provide the output.
    Type: Grant
    Filed: June 28, 1996
    Date of Patent: July 14, 1998
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Chung T. Nguyen, Francis J. O'Brien, Jr., Sherry E. Hammel, Bruce J. Bates, Steven C. Nardone
  • Patent number: 5696700
    Abstract: A signal processing system and computer-implemented method for processing a igital data sequence representing an input signal to generate a fractal dimension value. The system includes a correlation integral value generation module, correlation plot generation module, a segmentation module, correlation dimension generation module, and a control module. The correlation integral value generation module generates a series of correlation integral values for points w.sub.n (k) in "N"-dimensional space corresponding to vectors of said digital data sequence, and in particular generates inter-point distance values within each of a plurality of volume elements of said "N"-dimensional space. The correlation plot generation module generates a correlation integral plot comprising a plot of the correlation integral values as a function of said "N"-dimensional space volume elements. The segmentation module generates, from the plot, a series of correlation integral plot segments.
    Type: Grant
    Filed: June 26, 1995
    Date of Patent: December 9, 1997
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Francis J. O'Brien, Jr., Chung T. Nguyen, Sherry E. Hammel, Bruce J. Bates, Steven C. Nardone
  • Patent number: 5675553
    Abstract: The present invention comprises a method for filling in missing data intels in a quantized time-dependent data signal that is generated by, e.g., an underwater acoustic sensing device. In accordance with one embodiment of the invention, this quantized time-dependent data signal is analyzed to determine the number and location of any intervals of missing data, i.e., gaps in the time series data signal caused by noise in the sensing equipment or the local environment. The quantized time-dependent data signal is also modified by a low pass filter to remove any undesirable high frequency noise components within the signal. A plurality of mathematical models are then individually tested to derive an optimum regression curve for that model, relative to a selected portion of the signal data immediately preceding each previously identified data gap.
    Type: Grant
    Filed: June 28, 1996
    Date of Patent: October 7, 1997
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: Francis J. O'Brien, Jr., Chung T. Nguyen, Sherry E. Hammel, Bruce J. Bates, Steven C. Nardone
  • Patent number: 5373456
    Abstract: A system for providing an iterative method of assessing accuracy of selec models of physical phenomena and for determining selection of alternate models in response to a data sequence in the presence of noise. Initially, a residual sequence is generated reflecting difference values between in response to said data sequence and an expected data sequence as would be represented by a selected model. Feature estimate values of a plurality of predetermined data features in the residual sequence are then generated. In response to the feature estimate values, a threshold value is generated for each feature at an estimated ratio of data to noise. Probability values are generated in response to the threshold value, representing the likelihood that the feature exists in the data sequence, does not exist in the data sequence, and that the existence or non-existence in the data sequence is not determinable. Finally, a model is selected in response to the probability values for use during a subsequent iteration.
    Type: Grant
    Filed: November 2, 1992
    Date of Patent: December 13, 1994
    Assignee: The United States of America as represented by the Secretary of the Navy
    Inventors: David J. Ferkinhoff, Kai F. Gong, Kathleen D. Keay, Steven C. Nardone