Patents by Inventor Steven Chad Richardson

Steven Chad Richardson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12260371
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: March 25, 2025
    Assignee: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe
  • Patent number: 12259256
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: March 25, 2025
    Assignee: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Margaret Alden Tinsley, Akaash Sanyal, Robyn Freeman, Travis Gaddie, Muneeb Alam, Steven Chad Richardson, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Luke Gerdes, Oleksandr Klesov, Luciano Kiniti Issoe
  • Publication number: 20250044094
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: October 24, 2024
    Publication date: February 6, 2025
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Luciano Kiniti Issoe, Tianfang Ni, Luke Gerdes, Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Cory A. Demieville, Robyn Freeman, Oleksandr Klesov
  • Publication number: 20240418697
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: August 27, 2024
    Publication date: December 19, 2024
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Cory A. Demieville, Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe
  • Patent number: 12169796
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Grant
    Filed: February 6, 2024
    Date of Patent: December 17, 2024
    Assignee: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe
  • Patent number: 12163788
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: December 10, 2024
    Assignee: FREEPORT MINERALS CORPORATION
    Inventors: Luciano Kiniti Issoe, Tianfang Ni, Luke Gerdes, Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Cory A. Demieville, Robyn Freeman, Oleksandr Klesov
  • Publication number: 20240403790
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: August 16, 2024
    Publication date: December 5, 2024
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Oleksandr Klesov, Luke Gerdes, Dana Geislinger, Margaret Alden Tinsley, Robyn Freeman, Akaash Sanyal, Muneeb Alam, Raquel Crossman, Travis Gaddie, Steven Chad Richardson, Tianfang Ni, Cory A. Demieville, Luciano Kiniti Issoe
  • Publication number: 20240403738
    Abstract: The system may include a secondary irrigation feature that determines a percent of overlap of each of a plurality of submodules in a first lift over each of a plurality of submodules in a second lift and adjusts at least one of leaching operations or a leaching model based on the total tonnage weighted average of metal in the second lift. The method may further comprise determining an acid gap based on a difference between total acid given and total acid consumption; and further adjusting at least one of the leaching operations or the leaching model based on the acid gap. The method may further comprise determining a percentage of compacted material based on the material that is compacted and irrigated divided by the material that is irrigated; and further adjusting at least one of the leaching operations or the leaching model based on the percentage of compacted material.
    Type: Application
    Filed: August 14, 2024
    Publication date: December 5, 2024
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Steven Chad Richardson, Raquel Crossman, Cristian Caro, Kevin Cheng, Rosemary D. Blosser, Amelia Briggs
  • Publication number: 20240403737
    Abstract: The system may include a secondary irrigation feature that determines a percent of overlap of each of a plurality of submodules in a first lift over each of a plurality of submodules in a second lift and adjusts at least one of leaching operations or a leaching model based on the total tonnage weighted average of metal in the second lift. The method may further comprise determining an acid gap based on a difference between total acid given and total acid consumption; and further adjusting at least one of the leaching operations or the leaching model based on the acid gap. The method may further comprise determining a percentage of compacted material based on the material that is compacted and irrigated divided by the material that is irrigated; and further adjusting at least one of the leaching operations or the leaching model based on the percentage of compacted material.
    Type: Application
    Filed: August 14, 2024
    Publication date: December 5, 2024
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Steven Chad Richardson, Raquel Crossman, Cristian Caro, Kevin Cheng, Rosemary D. Blosser, Amelia Briggs
  • Publication number: 20240403739
    Abstract: The system may include a secondary irrigation feature that determines a percent of overlap of each of a plurality of submodules in a first lift over each of a plurality of submodules in a second lift and adjusts at least one of leaching operations or a leaching model based on the total tonnage weighted average of metal in the second lift. The method may further comprise determining an acid gap based on a difference between total acid given and total acid consumption; and further adjusting at least one of the leaching operations or the leaching model based on the acid gap. The method may further comprise determining a percentage of compacted material based on the material that is compacted and irrigated divided by the material that is irrigated; and further adjusting at least one of the leaching operations or the leaching model based on the percentage of compacted material.
    Type: Application
    Filed: August 14, 2024
    Publication date: December 5, 2024
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Steven Chad Richardson, Raquel Crossman, Cristian Caro, Kevin Cheng, Rosemary D. Blosser, Amelia Briggs
  • Patent number: 12111303
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: October 8, 2024
    Assignee: FREEPORT MINERALS CORPORATION
    Inventors: Cory A. Demieville, Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe
  • Patent number: 12106247
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: October 1, 2024
    Assignee: FREEPORT MINERALS CORPORATION
    Inventors: Oleksandr Klesov, Luke Gerdes, Dana Geislinger, Margaret Alden Tinsley, Robyn Freeman, Akaash Sanyal, Muneeb Alam, Raquel Crossman, Travis Gaddie, Steven Chad Richardson, Tianfang Ni, Cory A. Demieville, Luciano Kiniti Issoe
  • Publication number: 20240320571
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: June 6, 2024
    Publication date: September 26, 2024
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe
  • Patent number: 12099942
    Abstract: The system may include a secondary irrigation feature that determines a percent of overlap of each of a plurality of submodules in a first lift over each of a plurality of submodules in a second lift and adjusts at least one of leaching operations or a leaching model based on the total tonnage weighted average of metal in the second lift. The method may further comprise determining an acid gap based on a difference between total acid given and total acid consumption; and further adjusting at least one of the leaching operations or the leaching model based on the acid gap. The method may further comprise determining a percentage of compacted material based on the material that is compacted and irrigated divided by the material that is irrigated; and further adjusting at least one of the leaching operations or the leaching model based on the percentage of compacted material.
    Type: Grant
    Filed: October 11, 2023
    Date of Patent: September 24, 2024
    Assignee: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Steven Chad Richardson, Raquel Crossman, Cristian Caro, Kevin Cheng, Rosemary D. Blosser, Amelia Briggs
  • Patent number: 12067505
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Grant
    Filed: April 25, 2023
    Date of Patent: August 20, 2024
    Assignee: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe
  • Publication number: 20240242135
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: February 6, 2024
    Publication date: July 18, 2024
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe
  • Publication number: 20240124951
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: December 28, 2023
    Publication date: April 18, 2024
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe
  • Publication number: 20240127135
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Application
    Filed: December 28, 2023
    Publication date: April 18, 2024
    Applicant: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe
  • Patent number: 11948103
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Grant
    Filed: June 22, 2023
    Date of Patent: April 2, 2024
    Assignee: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe
  • Patent number: 11893519
    Abstract: The method may comprise receiving historical data (e.g., mineralogy data, irrigation data, raffinate data, heat data, lift height data, geographic data on ore placement and/or blower data); training a predictive model using the historical data to create a trained predictive model; adding future assumption data to the trained predictive model; running the forecast engine for a plurality of parameters to obtain forecast data for a mining production target; comparing the forecast data for the mining production target to the actual data for the mining production target; determining deviations between the forecast data and the actual data, based on the comparing; and changing each of the plurality of parameters from the forecast data to the actual data to determine a contribution to the deviations for each of the plurality of parameters.
    Type: Grant
    Filed: April 25, 2023
    Date of Patent: February 6, 2024
    Assignee: FREEPORT MINERALS CORPORATION
    Inventors: Dana Geislinger, Travis Gaddie, Margaret Alden Tinsley, Muneeb Alam, Steven Chad Richardson, Akaash Sanyal, Raquel Crossman, Tianfang Ni, Cory A. Demieville, Luke Gerdes, Robyn Freeman, Oleksandr Klesov, Luciano Kiniti Issoe