Patents by Inventor Steven Chu
Steven Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12208394Abstract: An apparatus includes a substrate, a first heating element, and a second heating element. The substrate includes a first portion, a second portion, and a third portion that is between the first portion and the second portion. The first portion is characterized by a first thermal conductivity, the second portion is characterized by a second thermal conductivity, and the third portion is characterized by a third thermal conductivity. The third thermal conductivity is less than the first thermal conductivity and the second thermal conductivity. The first heating element is coupled to the first portion of the substrate, and is configured to produce a first thermal output. The second heating element is coupled to the second portion of the substrate, and configured to produce a second thermal output. The second thermal output is different from the first thermal output.Type: GrantFiled: April 19, 2021Date of Patent: January 28, 2025Assignee: Visby Medical, Inc.Inventors: Boris Andreyev, Brian Ciopyk, Victor Briones, Jonathan Hong, David Swenson, Gregory Loney, Adam De La Zerda, Steven Chu
-
Patent number: 12138624Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.Type: GrantFiled: October 22, 2021Date of Patent: November 12, 2024Assignee: Visby Medical, Inc.Inventors: Boris Andreyev, Keith E. Moravick, Brian Ciopyk, Victor Briones, Gregory Loney, Adam De La Zerda, Jesus Ching, Steven Chu, David Swenson, Helen Huang, Colin Kelly
-
Patent number: 12133771Abstract: This disclosure relates to combined frequency and angle compounding for speckle reduction in ultrasound imaging. Such combined frequency and angle compounding can result in a multiplicative speckle reduction compared to using either frequency compounding or angle compounding alone. Compounding methods of this disclosure can make use of the full aperture of the ultrasound probe when acquiring individual images, hence there can be no compromise in resolution. In disclosed embodiments, ultrasound images can be obtained while an ultrasound probe is moving and the relative position and orientation of the ultrasound images can be determined from a measurement of the position and orientation of the ultrasound probe. Certain embodiments can correct for the movement and distortion of an object being imaged during the image acquisition.Type: GrantFiled: May 21, 2019Date of Patent: November 5, 2024Assignees: The Board of Trustees of the Leland Stanford Junior University, THORLABS, INC.Inventors: Yilei Li, Steven Chu, Noah Yuzo Toyonaga, James Y Jiang, Alex E. Cable
-
Patent number: 11937977Abstract: This disclosure relates to ultrasound imaging with reduced speckle. Ultrasound imaging with frequency compounding and angle compounding is disclosed. Techniques are disclosed to make ultrasound imaging with frequency and angle compounding more robust. One such technique is non-rigid image registration to align ultrasound images for angle compounding. Another disclosed technique includes selecting a subset of ultrasound images for non-rigid ultrasound image registration.Type: GrantFiled: June 18, 2019Date of Patent: March 26, 2024Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Noah Yuzo Toyonaga, Yilei Li, Steven Chu
-
Publication number: 20230277967Abstract: Described here is an air filter comprising a substrate and a network of polymeric nanofibers deposited on the substrate, wherein the air filter a removal efficiency for PM2.5 of at least 70% when a light transmittance is below 50%. Also described here is an electric air filter comprising a first layer adapted to receive a first electric voltage, wherein the first layer comprises an organic fiber coated with a conductive material. Further described is an air filter for high temperature filtration, comprising a substrate and a network of polymeric nanofibers deposited on the substrate, wherein the air filter has a removal efficiency for PM2.5 of at least 70% at a temperature of a least 70° C.Type: ApplicationFiled: December 20, 2022Publication date: September 7, 2023Applicant: Board of Trustees of the Leland Stanford Junior UniversityInventors: Yi Cui, Rufan Zhang, Chong Liu, Po-Chun Hsu, Steven Chu
-
Patent number: 11603492Abstract: An upconversion single molecule probe is provided that includes a core having a nanoparticle seed crystal, where the nanoparticle seed crystal is an upconversion seed crystal, a first shell enveloping the core, and a second shell enveloping the first shell.Type: GrantFiled: May 9, 2019Date of Patent: March 14, 2023Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Steven Chu, Qian Liu, Yunxiang Zhang, Chunte Peng
-
Publication number: 20230075724Abstract: Electrochemical methods using intercalation chemistry to extract Li from seawater using the TiO2-coated FePO4 electrode. The difference in the thermodynamic intercalation potentials, as well as the diffusion barriers between Li and Na, could provide near 100% selectivity towards Li interaction when Li/Na molar ratio is higher than 10-3. For lower Li/Na ratio as in the authentic seawater case, pulsed-rest and pulse-rest-reverse pulse-rest electrochemical methods were developed to lower the intercalation overpotential and it was proven to successfully boost the Li selectivity. Moreover, the pulse-rest-reverse pulse-rest method can also promote electrode crystal structure stability during the co-intercalation of Li and Na and prolong the lifetime of the electrode. Finally, 10 cycles of successful and stable Li extraction with 1:1 of Li to Na recovery from authentic seawater were demonstrated, which is equivalent to the selectivity of ˜1.8×104. Also, with lake water of higher initial Li/Na ratio of 1.Type: ApplicationFiled: September 15, 2022Publication date: March 9, 2023Applicant: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Yi Cui, Steven Chu, Chong Liu
-
Patent number: 11529633Abstract: An apparatus includes a substrate, a first heating element, and a second heating element. The substrate includes a first portion, a second portion, and a third portion that is between the first portion and the second portion. The first portion is characterized by a first thermal conductivity, the second portion is characterized by a second thermal conductivity, and the third portion is characterized by a third thermal conductivity. The third thermal conductivity is less than the first thermal conductivity and the second thermal conductivity. The first heating element is coupled to the first portion of the substrate, and is configured to produce a first thermal output. The second heating element is coupled to the second portion of the substrate, and configured to produce a second thermal output. The second thermal output is different from the first thermal output.Type: GrantFiled: May 25, 2021Date of Patent: December 20, 2022Assignee: Visby Medical, Inc.Inventors: Boris Andreyev, Brian Ciopyk, Victor Briones, Jonathan Hong, David Swenson, Gregory Loney, Adam De La Zerda, Steven Chu
-
Patent number: 11369343Abstract: Nonlinear ultrasound imaging systems and methods are disclose. In one aspect, a nonlinear ultrasound imaging system includes a first transducer configured to transmit a first ultrasound signal along a scan line, a second transducer configured to sweep a second ultrasound signal along the scan line such that the first and second ultrasound signals intersect at a plurality of voxels, and a third transducer configured to receive echoes associated with interactions of the first and second ultrasound signals at the plurality of voxels. The nonlinear ultrasound imaging system further includes a processor configured to generate an ultrasound image based on the echoes.Type: GrantFiled: December 23, 2019Date of Patent: June 28, 2022Assignee: The Board of Trustees of the Leland Stanford Junior UniversityInventors: Yilei Li, Steven Chu
-
Patent number: 11273443Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.Type: GrantFiled: October 14, 2020Date of Patent: March 15, 2022Assignee: Visby Medical, Inc.Inventors: Boris Andreyev, Keith E. Moravick, Brian Ciopyk, Victor Briones, Gregory Loney, Adam De La Zerda, Jesus Ching, Steven Chu, David Swenson, Helen Huang, Colin Kelly
-
Publication number: 20220055032Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.Type: ApplicationFiled: October 22, 2021Publication date: February 24, 2022Applicant: Visby Medical, Inc.Inventors: Boris ANDREYEV, Keith E. MORAVICK, Brian CIOPYK, Victor BRIONES, Gregory LONEY, Adam DE LA ZERDA, Jesus CHING, Steven CHU, David SWENSON, Helen HUANG, Colin KELLY
-
Publication number: 20220041926Abstract: An upconversion single molecule probe is provided that includes a core having a nanoparticle seed crystal, where the nanoparticle seed crystal is an upconversion seed crystal, a first shell enveloping the core, and a second shell enveloping the first shell.Type: ApplicationFiled: May 9, 2019Publication date: February 10, 2022Inventors: Steven Chu, Qian Liu, Yunxiang Zhang, Chunte Peng
-
Publication number: 20210354131Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.Type: ApplicationFiled: September 11, 2020Publication date: November 18, 2021Applicant: Visby Medical, Inc.Inventors: Boris ANDREYEV, Keith E. MORAVICK, Brian CIOPYK, Victor BRIONES, Gregory LONEY, Adam DE LA ZERDA, Jesus CHING, Steven CHU, David SWENSON, Helen HUANG, Colin KELLY
-
Publication number: 20210354132Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.Type: ApplicationFiled: October 14, 2020Publication date: November 18, 2021Applicant: Visby Medical, Inc.Inventors: Boris ANDREYEV, Keith E. MORAVICK, Brian CIOPYK, Victor BRIONES, Gregory LONEY, Adam DE LA ZERDA, Jesus CHING, Steven CHU, David SWENSON, Helen HUANG, Colin KELLY
-
Patent number: 11167285Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.Type: GrantFiled: August 23, 2018Date of Patent: November 9, 2021Assignee: Visby Medical, Inc.Inventors: Boris Andreyev, Keith E. Moravick, Brian Ciopyk, Victor Briones, Gregory Loney, Adam De La Zerda, Jesus Ching, Steven Chu, David Swenson, Helen Huang, Colin Kelly
-
Publication number: 20210331159Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.Type: ApplicationFiled: August 23, 2018Publication date: October 28, 2021Applicant: Visby Medical, Inc.Inventors: Boris ANDREYEV, Keith E. MORAVICK, Brian CIOPYK, Victor BRIONES, Gregory LONEY, Adam DE LA ZERDA, Jesus CHING, Steven CHU, David SWENSON, Helen HUANG, Colin KELLY
-
Publication number: 20210283616Abstract: An apparatus includes a substrate, a first heating element, and a second heating element. The substrate includes a first portion, a second portion, and a third portion that is between the first portion and the second portion. The first portion is characterized by a first thermal conductivity, the second portion is characterized by a second thermal conductivity, and the third portion is characterized by a third thermal conductivity. The third thermal conductivity is less than the first thermal conductivity and the second thermal conductivity. The first heating element is coupled to the first portion of the substrate, and is configured to produce a first thermal output. The second heating element is coupled to the second portion of the substrate, and configured to produce a second thermal output. The second thermal output is different from the first thermal output.Type: ApplicationFiled: May 25, 2021Publication date: September 16, 2021Applicant: Visby Medical, Inc.Inventors: Boris ANDREYEV, Brian CIOPYK, Victor BRIONES, Jonathan HONG, David SWENSON, Gregory LONEY, Adam DE LA ZERDA, Steven CHU
-
Publication number: 20210251612Abstract: Ultrasound imaging systems and methods with frequency (spectral) compounding for speckle reduction are disclosed. In one aspect, an ultrasound imaging system includes a transducer probe with interleaved transmit and receive arrays. The system may utilize ultrasound pulses having an optimized time-bandwidth product. In one aspect, a transducer probe with separate transmit and receive elements can enable transmission and reception of multiple ultrasound pulses, each centered at a different frequency, during the time of one A-scan. Thus, such a system can capture multiple independent speckle images without reducing overall B-mode framerate. In another aspect, the system may transmit a broadband pulse and may obtain separate speckle images by filtering the received echo using multiple spectral filters. The system may compound multiple images captured at different frequencies to provide speckle reduction.Type: ApplicationFiled: December 18, 2020Publication date: August 19, 2021Inventors: Yilei Li, Steven CHU
-
Publication number: 20210237090Abstract: An apparatus includes a substrate, a first heating element, and a second heating element. The substrate includes a first portion, a second portion, and a third portion that is between the first portion and the second portion. The first portion is characterized by a first thermal conductivity, the second portion is characterized by a second thermal conductivity, and the third portion is characterized by a third thermal conductivity. The third thermal conductivity is less than the first thermal conductivity and the second thermal conductivity. The first heating element is coupled to the first portion of the substrate, and is configured to produce a first thermal output. The second heating element is coupled to the second portion of the substrate, and configured to produce a second thermal output. The second thermal output is different from the first thermal output.Type: ApplicationFiled: April 19, 2021Publication date: August 5, 2021Applicant: Visby Medical, Inc.Inventors: Boris ANDREYEV, Brian CIOPYK, Victor BRIONES, Jonathan HONG, David SWENSON, Gregory LONEY, Adam DE LA ZERDA, Steven CHU
-
Publication number: 20210219961Abstract: This disclosure relates to ultrasound imaging with reduced speckle. Ultrasound imaging with frequency compounding and angle compounding is disclosed. Techniques are disclosed to make ultrasound imaging with frequency and angle compounding more robust. One such technique is non-rigid image registration to align ultrasound images for angle compounding. Another disclosed technique includes selecting a subset of ultrasound images for non-rigid ultrasound image registration.Type: ApplicationFiled: June 18, 2019Publication date: July 22, 2021Inventors: Noah Yuzo TOYONAGA, Yilei LI, Steven CHU