Patents by Inventor Steven Chu

Steven Chu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240135020
    Abstract: Devices, systems, and methods for allowing parents to view and track smart phone activities of their children can include one or more child software modules. The module can be installed on each child's smart phone. The module can access and extract data from or about more than one of the smart phone's other software applications, including at least two of the following: a texting application, a social media application, an image application that facilitates transmission or reception of images, and a web browser application. The module can further send the extracted data to an analysis server. The module can also monitor location data. Moreover, the system can include an analysis server that can identify potentially harmful language, images, and websites. Further, the system can include a parent portal. The parent portal can receive results from the analysis server.
    Type: Application
    Filed: September 24, 2023
    Publication date: April 25, 2024
    Inventors: Rowland William Day, II, Eric John Wise, Tienshiao Ma, Manuel Calaycay Palafox, Kelly Chu, Steven Sigler
  • Patent number: 11937977
    Abstract: This disclosure relates to ultrasound imaging with reduced speckle. Ultrasound imaging with frequency compounding and angle compounding is disclosed. Techniques are disclosed to make ultrasound imaging with frequency and angle compounding more robust. One such technique is non-rigid image registration to align ultrasound images for angle compounding. Another disclosed technique includes selecting a subset of ultrasound images for non-rigid ultrasound image registration.
    Type: Grant
    Filed: June 18, 2019
    Date of Patent: March 26, 2024
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Noah Yuzo Toyonaga, Yilei Li, Steven Chu
  • Publication number: 20230277967
    Abstract: Described here is an air filter comprising a substrate and a network of polymeric nanofibers deposited on the substrate, wherein the air filter a removal efficiency for PM2.5 of at least 70% when a light transmittance is below 50%. Also described here is an electric air filter comprising a first layer adapted to receive a first electric voltage, wherein the first layer comprises an organic fiber coated with a conductive material. Further described is an air filter for high temperature filtration, comprising a substrate and a network of polymeric nanofibers deposited on the substrate, wherein the air filter has a removal efficiency for PM2.5 of at least 70% at a temperature of a least 70° C.
    Type: Application
    Filed: December 20, 2022
    Publication date: September 7, 2023
    Applicant: Board of Trustees of the Leland Stanford Junior University
    Inventors: Yi Cui, Rufan Zhang, Chong Liu, Po-Chun Hsu, Steven Chu
  • Patent number: 11603492
    Abstract: An upconversion single molecule probe is provided that includes a core having a nanoparticle seed crystal, where the nanoparticle seed crystal is an upconversion seed crystal, a first shell enveloping the core, and a second shell enveloping the first shell.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: March 14, 2023
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Steven Chu, Qian Liu, Yunxiang Zhang, Chunte Peng
  • Publication number: 20230075724
    Abstract: Electrochemical methods using intercalation chemistry to extract Li from seawater using the TiO2-coated FePO4 electrode. The difference in the thermodynamic intercalation potentials, as well as the diffusion barriers between Li and Na, could provide near 100% selectivity towards Li interaction when Li/Na molar ratio is higher than 10-3. For lower Li/Na ratio as in the authentic seawater case, pulsed-rest and pulse-rest-reverse pulse-rest electrochemical methods were developed to lower the intercalation overpotential and it was proven to successfully boost the Li selectivity. Moreover, the pulse-rest-reverse pulse-rest method can also promote electrode crystal structure stability during the co-intercalation of Li and Na and prolong the lifetime of the electrode. Finally, 10 cycles of successful and stable Li extraction with 1:1 of Li to Na recovery from authentic seawater were demonstrated, which is equivalent to the selectivity of ˜1.8×104. Also, with lake water of higher initial Li/Na ratio of 1.
    Type: Application
    Filed: September 15, 2022
    Publication date: March 9, 2023
    Applicant: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yi Cui, Steven Chu, Chong Liu
  • Patent number: 11529633
    Abstract: An apparatus includes a substrate, a first heating element, and a second heating element. The substrate includes a first portion, a second portion, and a third portion that is between the first portion and the second portion. The first portion is characterized by a first thermal conductivity, the second portion is characterized by a second thermal conductivity, and the third portion is characterized by a third thermal conductivity. The third thermal conductivity is less than the first thermal conductivity and the second thermal conductivity. The first heating element is coupled to the first portion of the substrate, and is configured to produce a first thermal output. The second heating element is coupled to the second portion of the substrate, and configured to produce a second thermal output. The second thermal output is different from the first thermal output.
    Type: Grant
    Filed: May 25, 2021
    Date of Patent: December 20, 2022
    Assignee: Visby Medical, Inc.
    Inventors: Boris Andreyev, Brian Ciopyk, Victor Briones, Jonathan Hong, David Swenson, Gregory Loney, Adam De La Zerda, Steven Chu
  • Patent number: 11369343
    Abstract: Nonlinear ultrasound imaging systems and methods are disclose. In one aspect, a nonlinear ultrasound imaging system includes a first transducer configured to transmit a first ultrasound signal along a scan line, a second transducer configured to sweep a second ultrasound signal along the scan line such that the first and second ultrasound signals intersect at a plurality of voxels, and a third transducer configured to receive echoes associated with interactions of the first and second ultrasound signals at the plurality of voxels. The nonlinear ultrasound imaging system further includes a processor configured to generate an ultrasound image based on the echoes.
    Type: Grant
    Filed: December 23, 2019
    Date of Patent: June 28, 2022
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Yilei Li, Steven Chu
  • Patent number: 11273443
    Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.
    Type: Grant
    Filed: October 14, 2020
    Date of Patent: March 15, 2022
    Assignee: Visby Medical, Inc.
    Inventors: Boris Andreyev, Keith E. Moravick, Brian Ciopyk, Victor Briones, Gregory Loney, Adam De La Zerda, Jesus Ching, Steven Chu, David Swenson, Helen Huang, Colin Kelly
  • Publication number: 20220055032
    Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.
    Type: Application
    Filed: October 22, 2021
    Publication date: February 24, 2022
    Applicant: Visby Medical, Inc.
    Inventors: Boris ANDREYEV, Keith E. MORAVICK, Brian CIOPYK, Victor BRIONES, Gregory LONEY, Adam DE LA ZERDA, Jesus CHING, Steven CHU, David SWENSON, Helen HUANG, Colin KELLY
  • Publication number: 20220041926
    Abstract: An upconversion single molecule probe is provided that includes a core having a nanoparticle seed crystal, where the nanoparticle seed crystal is an upconversion seed crystal, a first shell enveloping the core, and a second shell enveloping the first shell.
    Type: Application
    Filed: May 9, 2019
    Publication date: February 10, 2022
    Inventors: Steven Chu, Qian Liu, Yunxiang Zhang, Chunte Peng
  • Publication number: 20210354131
    Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.
    Type: Application
    Filed: September 11, 2020
    Publication date: November 18, 2021
    Applicant: Visby Medical, Inc.
    Inventors: Boris ANDREYEV, Keith E. MORAVICK, Brian CIOPYK, Victor BRIONES, Gregory LONEY, Adam DE LA ZERDA, Jesus CHING, Steven CHU, David SWENSON, Helen HUANG, Colin KELLY
  • Publication number: 20210354132
    Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.
    Type: Application
    Filed: October 14, 2020
    Publication date: November 18, 2021
    Applicant: Visby Medical, Inc.
    Inventors: Boris ANDREYEV, Keith E. MORAVICK, Brian CIOPYK, Victor BRIONES, Gregory LONEY, Adam DE LA ZERDA, Jesus CHING, Steven CHU, David SWENSON, Helen HUANG, Colin KELLY
  • Patent number: 11167285
    Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.
    Type: Grant
    Filed: August 23, 2018
    Date of Patent: November 9, 2021
    Assignee: Visby Medical, Inc.
    Inventors: Boris Andreyev, Keith E. Moravick, Brian Ciopyk, Victor Briones, Gregory Loney, Adam De La Zerda, Jesus Ching, Steven Chu, David Swenson, Helen Huang, Colin Kelly
  • Publication number: 20210331159
    Abstract: A hand-held molecular diagnostic test device includes a housing, an amplification (or PCR) module, and a detection module. The amplification module is configured to receive an input sample, and defines a reaction volume. The amplification module includes a heater such that the amplification module can perform a polymerase chain reaction (PCR) on the input sample. The detection module is configured to receive an output from the amplification module and a reagent formulated to produce a signal that indicates a presence of a target amplicon within the input sample. The amplification module and the detection module are integrated within the housing.
    Type: Application
    Filed: August 23, 2018
    Publication date: October 28, 2021
    Applicant: Visby Medical, Inc.
    Inventors: Boris ANDREYEV, Keith E. MORAVICK, Brian CIOPYK, Victor BRIONES, Gregory LONEY, Adam DE LA ZERDA, Jesus CHING, Steven CHU, David SWENSON, Helen HUANG, Colin KELLY
  • Publication number: 20210283616
    Abstract: An apparatus includes a substrate, a first heating element, and a second heating element. The substrate includes a first portion, a second portion, and a third portion that is between the first portion and the second portion. The first portion is characterized by a first thermal conductivity, the second portion is characterized by a second thermal conductivity, and the third portion is characterized by a third thermal conductivity. The third thermal conductivity is less than the first thermal conductivity and the second thermal conductivity. The first heating element is coupled to the first portion of the substrate, and is configured to produce a first thermal output. The second heating element is coupled to the second portion of the substrate, and configured to produce a second thermal output. The second thermal output is different from the first thermal output.
    Type: Application
    Filed: May 25, 2021
    Publication date: September 16, 2021
    Applicant: Visby Medical, Inc.
    Inventors: Boris ANDREYEV, Brian CIOPYK, Victor BRIONES, Jonathan HONG, David SWENSON, Gregory LONEY, Adam DE LA ZERDA, Steven CHU
  • Publication number: 20210251612
    Abstract: Ultrasound imaging systems and methods with frequency (spectral) compounding for speckle reduction are disclosed. In one aspect, an ultrasound imaging system includes a transducer probe with interleaved transmit and receive arrays. The system may utilize ultrasound pulses having an optimized time-bandwidth product. In one aspect, a transducer probe with separate transmit and receive elements can enable transmission and reception of multiple ultrasound pulses, each centered at a different frequency, during the time of one A-scan. Thus, such a system can capture multiple independent speckle images without reducing overall B-mode framerate. In another aspect, the system may transmit a broadband pulse and may obtain separate speckle images by filtering the received echo using multiple spectral filters. The system may compound multiple images captured at different frequencies to provide speckle reduction.
    Type: Application
    Filed: December 18, 2020
    Publication date: August 19, 2021
    Inventors: Yilei Li, Steven CHU
  • Publication number: 20210237090
    Abstract: An apparatus includes a substrate, a first heating element, and a second heating element. The substrate includes a first portion, a second portion, and a third portion that is between the first portion and the second portion. The first portion is characterized by a first thermal conductivity, the second portion is characterized by a second thermal conductivity, and the third portion is characterized by a third thermal conductivity. The third thermal conductivity is less than the first thermal conductivity and the second thermal conductivity. The first heating element is coupled to the first portion of the substrate, and is configured to produce a first thermal output. The second heating element is coupled to the second portion of the substrate, and configured to produce a second thermal output. The second thermal output is different from the first thermal output.
    Type: Application
    Filed: April 19, 2021
    Publication date: August 5, 2021
    Applicant: Visby Medical, Inc.
    Inventors: Boris ANDREYEV, Brian CIOPYK, Victor BRIONES, Jonathan HONG, David SWENSON, Gregory LONEY, Adam DE LA ZERDA, Steven CHU
  • Publication number: 20210219961
    Abstract: This disclosure relates to ultrasound imaging with reduced speckle. Ultrasound imaging with frequency compounding and angle compounding is disclosed. Techniques are disclosed to make ultrasound imaging with frequency and angle compounding more robust. One such technique is non-rigid image registration to align ultrasound images for angle compounding. Another disclosed technique includes selecting a subset of ultrasound images for non-rigid ultrasound image registration.
    Type: Application
    Filed: June 18, 2019
    Publication date: July 22, 2021
    Inventors: Noah Yuzo TOYONAGA, Yilei LI, Steven CHU
  • Publication number: 20210212668
    Abstract: This disclosure relates to combined frequency and angle compounding for speckle reduction in ultrasound imaging Such combined frequency and angle compounding can result in a multiplicative speckle reduction compared to using either frequency compounding or angle compounding alone. Compounding methods of this disclosure can make use of the full aperture of the ultrasound probe when acquiring individual images, hence there can be no compromise in resolution. In disclosed embodiments, ultrasound images can be obtained while an ultrasound probe is moving and the relative position and orientation of the ultrasound images can be determined from a measurement of the position and orientation of the ultrasound probe. Certain embodiments can correct for the movement and distortion of an object being imaged during the image acquisition.
    Type: Application
    Filed: May 21, 2019
    Publication date: July 15, 2021
    Inventors: Yilei LI, Steven CHU, Noah Yuzo TOYONAGA, James Y. JIANG, Alex E. CABLE
  • Publication number: 20210198795
    Abstract: An electrochemical gas conversion device is provided, that includes a flexible membrane formed in a sack-shape, where the membrane includes a gas permeable and liquid-impermeable membrane, where at least a portion of the flexible membrane is surrounded by a liquid electrolyte held by a housing, where the flexible membrane includes a gas interior, an electrically conductive catalyst coating on an exterior surface of the flexible membrane, where the flexible membrane and the electrically conductive catalyst coating are configured as a anode or a cathode, and an inlet/outlet tube configured to flow the gas to the interior, from the interior, or to and from the interior of the flexible membrane.
    Type: Application
    Filed: November 7, 2018
    Publication date: July 1, 2021
    Inventors: Yi Cui, Jun Li, Steven Chu