Patents by Inventor Steven Claessens

Steven Claessens has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240082027
    Abstract: A distal aortic stent graft assembly including a main body having a proximal end and a distal end. The main body defines a peripheral opening. The proximal end defines a proximal opening. The distal end defines a distal opening. The proximal opening and the distal opening are configured to perfuse blood through the main body when the main body is in a deployed state. The distal aortic stent graft assembly further includes a coupling extending radially from the main body and corresponding to the opening in the main body. The coupling is configured to align with a blood vessel and perfuse blood through the coupling when the coupling is in the deployed state.
    Type: Application
    Filed: November 21, 2023
    Publication date: March 14, 2024
    Inventors: Keith PERKINS, Zachary BORGLIN, Mark STIGER, Julie BENTON, Steven CLAESSENS, Travis ROWE, Mark YOUNG
  • Publication number: 20240041585
    Abstract: A method of deploying a modular multibranch stent assembly. The method includes deploying a first modular stent device in an ascending aorta. The first modular stent device includes a main body, a bypass gate extending from the main body, and a bifurcated contra limb extending from the main body. The bifurcated contra limb includes a first distal limb and a second distal limb. The method further includes deploying a first bridging stent graft in the first distal limb and/or a second bridging stent graft in the second distal limb.
    Type: Application
    Filed: October 16, 2023
    Publication date: February 8, 2024
    Inventors: Keith PERKINS, Zachary BORGLIN, Mark STIGER, Julie BENTON, Steven CLAESSENS, Travis ROWE, Mark YOUNG
  • Publication number: 20240000560
    Abstract: A stent graft assembly including a main body and a branch coupling extending radially from the main body. A proximal end of the single branch stent device is configured to seal in an ascending portion of an aorta. The assembly further includes a modular stent device including a proximal end and a distal end. The proximal end of the modular stent graft is configured to couple to a distal end of the single branch stent device. The modular stent device includes a main body configured to couple inside the main body of the single branch stent device. The modular stent device includes a bypass gate and an artery leg. The modular stent device is configured to bifurcate at a bifurcation point from the main body to the bypass gate and the artery leg outside of and distal the distal end of the single branch stent device.
    Type: Application
    Filed: September 18, 2023
    Publication date: January 4, 2024
    Inventors: Keith PERKINS, Zachary BORGLIN, Mark STIGER, Julie BENTON, Steven CLAESSENS, Travis ROWE, Mark YOUNG
  • Patent number: 11850173
    Abstract: The techniques of this disclosure generally relate to a modular stent device that is deployed into the ascending aorta via femoral access. The modular stent device is a base or anchor component to which additional modular stent devices can be attached to exclude diseased areas of the aorta while at the same time allowing perfusion of the brachiocephalic artery, the left common carotid artery, and/or the left subclavian artery.
    Type: Grant
    Filed: June 29, 2021
    Date of Patent: December 26, 2023
    Assignee: Medtronic Vascular, Inc.
    Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young
  • Patent number: 11826226
    Abstract: The techniques of this disclosure generally relate to a modular stent device including a main body configured to be deployed in the ascending aorta, a bypass gate configured to be deployed in the aorta, and a bifurcated contra limb. The bifurcated contra limb includes a single proximal limb that is bifurcated (split) into a first distal limb and a second distal limb. By forming the bifurcated contra limb to include a single proximal limb that is bifurcated into the distal limbs, guiding a guide wire into the relatively larger opening of bifurcated contra limb at a proximal end is simpler than guiding a guidewire into two smaller limbs extending distally from main body. Accordingly, cannulation of the bifurcated contra limb is relatively simple thus simplifying the procedure. In addition, the parallel design mimics anatomical blood vessel bifurcations to limit flow disruptions.
    Type: Grant
    Filed: July 31, 2019
    Date of Patent: November 28, 2023
    Assignee: Medtronic Vascular, Inc.
    Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young
  • Patent number: 11806224
    Abstract: The techniques of this disclosure generally relate to an assembly including a single branch stent device and a modular stent device configured to be coupled to the single branch stent device. The single branch stent device includes a main body and a branch coupling extending radially from the main body. The modular stent device includes a main body configured to be coupled inside of the main body of the single branch stent device, a bypass gate extending distally from a distal end of the main body of the modular stent device, and an artery leg extending distally from the distal end of the main body of the modular stent device.
    Type: Grant
    Filed: November 2, 2021
    Date of Patent: November 7, 2023
    Assignee: Medtronic Vascular, Inc.
    Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young
  • Publication number: 20230255745
    Abstract: A method for deploying a stent device having a main body, a proximal coupling, and a distal coupling. The method includes extending a first guidewire in an aorta, extending a second guidewire in a brachiocephalic artery, and extending a third guidewire in an aortic branch vessel. The method further includes tracking the stent device along the first, second, and third guidewires. During the tracking step, the first guidewire extends through the main body, the second guidewire extends through the proximal coupling, and the third guidewire extends through the distal coupling. The method also includes deploying the main body within the aorta with the proximal coupling aligning with the brachiocephalic artery and the distal coupling aligning with the aortic branch vessel.
    Type: Application
    Filed: April 27, 2023
    Publication date: August 17, 2023
    Inventors: Keith PERKINS, Zachary BORGLIN, Mark STIGER, Julie BENTON, Steven CLAESSENS, Travis ROWE, Mark YOUNG
  • Publication number: 20230218385
    Abstract: A method of providing support in an aortic region. The method includes wrapping a landing band around an outside of a portion of an aortic vessel in a vicinity of a sinotubular junction (STJ) to form a wrapped portion of the aortic vessel. The method further includes securing the landing band to form a secured landing band. The method also includes endovascularly delivering a stent graft in a radially constricted configuration into the aortic vessel. The method also includes deploying the stent graft to a radially expanded configuration such that the stent graft contacts the wrapped portion of the aortic vessel. The method also includes connecting the stent graft in the radially expanded configuration to the secured landing band.
    Type: Application
    Filed: February 27, 2023
    Publication date: July 13, 2023
    Inventors: Keith PERKINS, Mark STIGER, Steven CLAESSENS
  • Patent number: 11672645
    Abstract: The techniques of this disclosure generally relate to an assembly including a single multibranch stent device. The single multibranch stent device includes a main body, a proximal coupling extending radially from the main body, and a distal coupling extending radially from the main body. The main body, the proximal coupling, and the distal coupling are permanently coupled to one another and the single multibranch stent device is a single piece. By forming the single multibranch stent device as a single piece, the single multibranch stent device can be deployed in a single deployment thus simplifying the deployment procedure.
    Type: Grant
    Filed: July 20, 2021
    Date of Patent: June 13, 2023
    Assignee: Medtronic Vascular, Inc.
    Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young
  • Publication number: 20230139876
    Abstract: An assembly including a transcatheter valve prosthesis and a leaflet folding accessory configured for use when compressing the transcatheter valve prosthesis into the crimped configuration. The transcatheter valve prosthesis includes a frame and a prosthetic valve component including at least one leaflet disposed within and secured to the frame. The leaflet folding accessory includes a plurality of guide fingers. A leaflet contact portion of each guide finger is configured to be disposed radially within the frame and contact an inner surface of a leaflet of the at least one leaflet. During crimping of the transcatheter valve prosthesis, the plurality of guide fingers remain disposed radially within the frame such that the at least one leaflet preferentially folds around the plurality of guide fingers.
    Type: Application
    Filed: September 30, 2022
    Publication date: May 4, 2023
    Inventors: Jason Bowe, Matthew Genovese, Victoria Ung, Jeffrey Sandstrom, Matthew Ziebol, Steven Claessens, Radhika Bhargav, Alkindi Kibria, Salvador O. Avelar, Brian Castelli
  • Patent number: 11617641
    Abstract: Systems and methods for building a landing zone for an endovascular procedure are described. This procedure is “hybrid” in that it involves both direct access (e.g., sternotomy or partial sternotomy) to the site for installation of the landing zone, as well as endovascular installation of a TAVR or TEVAR device (e.g., stent graft) once the landing zone is installed. The landing zone is installed by wrapping a landing band around a portion of a vessel. The landing band may be selected to be fixed at a diameter so that it inhibits any expansion of the vessel, and also supports a later-installed TAVR or TEVAR device. The TAVR or TEVAR device is then endovascularly delivered to the vessel and deployed therein. The device expands until it contacts the vessel, which is supported from the outside by the landing band, which thus constrains and supports the device from outside.
    Type: Grant
    Filed: June 22, 2021
    Date of Patent: April 4, 2023
    Assignee: Medtronic Vascular, Inc.
    Inventors: Keith Perkins, Mark Stiger, Steven Claessens
  • Publication number: 20220401209
    Abstract: The techniques of this disclosure generally relate to an assembly including a trifurcated modular stent device. The trifurcated modular stent device includes a main body, a bypass gate extending distally from a distal end of the main body, a primary artery leg extending distally from the distal end of the main body, and a distal artery leg extending distally from the distal end of the main body. The trifurcated modular stent device is delivered via supra aortic access such that the primary artery leg is deployed within the brachiocephalic artery providing immediate perfusion thereof.
    Type: Application
    Filed: August 24, 2022
    Publication date: December 22, 2022
    Inventors: Keith PERKINS, Mark STIGER, Steven CLAESSENS, Travis ROWE, Mark YOUNG
  • Publication number: 20220401238
    Abstract: Systems and methods for building a landing zone for an endovascular procedure are described. This procedure is “hybrid” in that it involves both direct access (e.g., sternotomy or partial sternotomy) to the site for installation of the landing zone, as well as endovascular installation of a TAVR or TEVAR device (e.g., stent graft) once the landing zone is installed. The landing zone is installed by wrapping a landing band around a portion of a vessel. The landing band may be selected to be fixed at a diameter so that it inhibits any expansion of the vessel, and also supports a later-installed TAVR or TEVAR device. The TAVR or TEVAR device is then endovascularly delivered to the vessel and deployed therein. The device expands until it contacts the vessel, which is supported from the outside by the landing band, which thus constrains and supports the device from outside.
    Type: Application
    Filed: June 22, 2021
    Publication date: December 22, 2022
    Inventors: Keith PERKINS, Mark STIGER, Steven CLAESSENS
  • Publication number: 20220218462
    Abstract: The techniques of this disclosure generally relate to a stent-graft system including a bifurcated stent-graft, a first bifurcating branch device, and a first branch extension. The bifurcated stent-graft includes a body, a first branch limb, and a second branch limb. The first bifurcating branch device includes a body segment coupled to the first branch limb of the bifurcated stent-graft, a first branch limb, and a second branch limb. The first branch extension is within the first branch limb of the first bifurcating branch device and within an external iliac artery. The first bifurcating branch device has a wide patient applicability since the treatment can be extended proximal to the anatomical iliac bifurcation and is not limited by the common iliac artery length. The stent-graft system is suitable to treat a wide range of internal and external iliac artery diameters.
    Type: Application
    Filed: March 30, 2022
    Publication date: July 14, 2022
    Inventors: Keith PERKINS, Travis ROWE, Mark STIGER, Mark YOUNG, Julie BENTON, Steven CLAESSENS
  • Patent number: 11344402
    Abstract: The techniques of this disclosure generally relate to a stent-graft system including a bifurcated stent-graft, a first bifurcating branch device, and a first branch extension. The bifurcated stent-graft includes a body, a first branch limb, and a second branch limb. The first bifurcating branch device includes a body segment coupled to the first branch limb of the bifurcated stent-graft, a first branch limb, and a second branch limb. The first branch extension is within the first branch limb of the first bifurcating branch device and within an external iliac artery. The first bifurcating branch device has a wide patient applicability since the treatment can be extended proximal to the anatomical iliac bifurcation and is not limited by the common iliac artery length. The stent-graft system is suitable to treat a wide range of internal and external iliac artery diameters.
    Type: Grant
    Filed: April 22, 2020
    Date of Patent: May 31, 2022
    Assignee: Medtronic Vascular, Inc.
    Inventors: Keith Perkins, Travis Rowe, Mark Stiger, Mark Young, Julie Benton, Steven Claessens
  • Publication number: 20220054253
    Abstract: The techniques of this disclosure generally relate to an assembly including a single branch stent device and a modular stent device configured to be coupled to the single branch stent device. The single branch stent device includes a main body and a branch coupling extending radially from the main body. The modular stent device includes a main body configured to be coupled inside of the main body of the single branch stent device, a bypass gate extending distally from a distal end of the main body of the modular stent device, and an artery leg extending distally from the distal end of the main body of the modular stent device.
    Type: Application
    Filed: November 2, 2021
    Publication date: February 24, 2022
    Inventors: Keith PERKINS, Zachary BORGLIN, Mark STIGER, Julie BENTON, Steven CLAESSENS, Travis ROWE, Mark YOUNG
  • Patent number: 11191633
    Abstract: The techniques of this disclosure generally relate to an assembly including a single branch stent device and a modular stent device configured to be coupled to the single branch stent device. The single branch stent device includes a main body and a branch coupling extending radially from the main body. The modular stent device includes a main body configured to be coupled inside of the main body of the single branch stent device, a bypass gate extending distally from a distal end of the main body of the modular stent device, and an artery leg extending distally from the distal end of the main body of the modular stent device.
    Type: Grant
    Filed: August 29, 2019
    Date of Patent: December 7, 2021
    Assignee: Medtronic Vascular, Inc.
    Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young
  • Publication number: 20210353442
    Abstract: The techniques of this disclosure generally relate to a modular stent device that is deployed via supra aortic access through the brachiocephalic artery. The modular stent device is a base or anchor component to which additional modular stent devices can be attached to exclude diseased areas of the aorta while at the same time allowing perfusion of the left common carotid artery and the left subclavian artery.
    Type: Application
    Filed: August 2, 2021
    Publication date: November 18, 2021
    Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young
  • Publication number: 20210346145
    Abstract: The techniques of this disclosure generally relate to an assembly including a single multibranch stent device. The single multibranch stent device includes a main body, a proximal coupling extending radially from the main body, and a distal coupling extending radially from the main body. The main body, the proximal coupling, and the distal coupling are permanently coupled to one another and the single multibranch stent device is a single piece. By forming the single multibranch stent device as a single piece, the single multibranch stent device can be deployed in a single deployment thus simplifying the deployment procedure.
    Type: Application
    Filed: July 20, 2021
    Publication date: November 11, 2021
    Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young
  • Publication number: 20210322188
    Abstract: The techniques of this disclosure generally relate to a modular stent device that is deployed into the ascending aorta via femoral access. The modular stent device is a base or anchor component to which additional modular stent devices can be attached to exclude diseased areas of the aorta while at the same time allowing perfusion of the brachiocephalic artery, the left common carotid artery, and/or the left subclavian artery.
    Type: Application
    Filed: June 29, 2021
    Publication date: October 21, 2021
    Inventors: Keith Perkins, Zachary Borglin, Mark Stiger, Julie Benton, Steven Claessens, Travis Rowe, Mark Young