Patents by Inventor Steven Clayton Vise

Steven Clayton Vise has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10641169
    Abstract: A hybrid combustion system, and method of operation, for a propulsion system is provided. The hybrid combustion system defines a radial direction, a circumferential direction, and a longitudinal centerline in common with the propulsion system extended along a longitudinal direction. The hybrid combustion system includes a rotating detonation combustion (RDC) system comprising an annular outer wall and an annular inner wall each generally concentric to the longitudinal centerline and together defining a RDC chamber and a RDC inlet, the RDC system further comprising a nozzle located at the RDC inlet defined by a nozzle wall. The nozzle defines a lengthwise direction extended between a nozzle inlet and a nozzle outlet along the lengthwise direction, and the nozzle inlet is configured to receive a flow of oxidizer. The nozzle further defines a throat between the nozzle inlet and the nozzle outlet, and wherein the nozzle defines a converging-diverging nozzle.
    Type: Grant
    Filed: June 9, 2017
    Date of Patent: May 5, 2020
    Assignee: General Electric Company
    Inventors: Steven Clayton Vise, Joseph Zelina, Arthur Wesley Johnson, Clayton Stuart Cooper, Sibtosh Pal
  • Publication number: 20200040843
    Abstract: A ramjet engine and system and method for operation is generally provided. The ramjet includes a longitudinal wall extended along a lengthwise direction. The longitudinal wall defines an inlet section, a combustion section, and an exhaust section. A fuel nozzle assembly is extended from the longitudinal wall. The fuel nozzle assembly defines a nozzle throat area. The fuel nozzle assembly is moveable along a radial direction to adjust the nozzle throat area based at least on a difference in pressure of a flow of fluid at an inlet of the inlet section and a pressure of the flow of fluid at the fuel nozzle assembly.
    Type: Application
    Filed: August 6, 2018
    Publication date: February 6, 2020
    Inventors: Sibtosh Pal, Steven Clayton Vise, Arthur Wesley Johnson, Clayton Stuart Cooper, Joseph Zelina
  • Publication number: 20190360695
    Abstract: A rotating detonation combustion (RDC) system including a gas nozzle defining a first convergent-divergent nozzle providing a flow of gas at least partially along a longitudinal direction. The flow of gas defines a fluid wall defined at least partially along the longitudinal direction. A detonation chamber is defined radially inward of the fluid wall relative to a combustion center plane. A fuel-oxidizer nozzle defining a second convergent-divergent nozzle provides a flow of fuel-oxidizer mixture to the detonation chamber. The fuel-oxidizer nozzle is defined radially inward of the gas nozzle and upstream of the detonation chamber relative to the combustion center plane.
    Type: Application
    Filed: May 23, 2018
    Publication date: November 28, 2019
    Inventors: Arthur Wesley Johnson, Steven Clayton Vise, Clayton Stuart Cooper, Joseph Zelina, Sibtosh Pal
  • Publication number: 20190271268
    Abstract: A turbine engine including a compressor rotor and a rotating detonation combustion (RDC) system. The compressor rotor includes a compressor airfoil defining a trailing edge disposed within a core flowpath of the turbine engine. The core flowpath defines a radial distance between an outer radius and an inner radius at the compressor rotor. The RDC system includes an outer wall and an inner wall each extended along a lengthwise direction and defining a detonation chamber therebetween. The RDC system further includes a strut defining a nozzle assembly and a fuel injection opening providing a flow of fuel to the detonation chamber. The compressor rotor provides a flow of oxidizer in direct fluid communication to the nozzle assembly of the RDC system.
    Type: Application
    Filed: March 1, 2018
    Publication date: September 5, 2019
    Inventors: Arthur Wesley Johnson, Steven Clayton Vise, Clayton Stuart Cooper, Joseph Zelina, Sibtosh Pal
  • Publication number: 20190264920
    Abstract: A Brayton cycle engine and method for operation. The engine includes an inner wall assembly and an upstream wall assembly each extended from a longitudinal wall into a gas flowpath. An actuator adjusts a depth of the detonation combustion region into the gas flowpath between the inner wall assembly and the upstream wall assembly. The engine flows an oxidizer through the gas flowpath and the inner wall captures a portion of the oxidizer. The engine further adjusts the captured flow of oxidizer via the upstream wall and flows a first flow of fuel to the captured flow of oxidizer to produce rotating detonation gases. The engine flows the detonation gases downstream and to mix with the flow of oxidizer, and flows and burns a second flow of fuel to the detonation gases/oxidizer mixture to produce thrust.
    Type: Application
    Filed: February 26, 2018
    Publication date: August 29, 2019
    Inventors: Sibtosh Pal, Steven Clayton Vise, Arthur Wesley Johnson, Clayton Stuart Cooper, Joseph Zelina
  • Publication number: 20190264917
    Abstract: A Brayton cycle engine including a longitudinal wall extended along a lengthwise direction. The longitudinal wall defines a gas flowpath of the engine. An inner wall assembly is extended from the longitudinal wall into the gas flowpath. The inner wall assembly defines a detonation combustion region in the gas flowpath upstream of the inner wall assembly.
    Type: Application
    Filed: February 26, 2018
    Publication date: August 29, 2019
    Inventors: Sibtosh Pal, Steven Clayton Vise, Arthur Wesley Johnson, Clayton Stuart Cooper, Joseph Zelina
  • Publication number: 20190264918
    Abstract: A Brayton cycle engine including a longitudinal wall extended along a lengthwise direction. The longitudinal wall defines a gas flowpath of the engine. A strut is extended through the gas flowpath between the longitudinal walls. An inner wall assembly is extended from the longitudinal wall and the strut into the gas flowpath. The inner wall assembly and strut together define a plurality of detonation combustion regions in the gas flowpath upstream of the inner wall assembly.
    Type: Application
    Filed: February 26, 2018
    Publication date: August 29, 2019
    Inventors: Sibtosh Pal, Steven Clayton Vise, Arthur Wesley Johnson, Clayton Stuart Cooper, Joseph Zelina
  • Publication number: 20190264919
    Abstract: A Brayton cycle engine including an inner wall assembly defining a detonation combustion region upstream thereof extended from a longitudinal wall into a gas flowpath. An actuator adjusts a depth of the detonation combustion region into the gas flowpath. A method for operating the engine includes flowing an oxidizer through the gas flowpath; capturing a portion of the flow of oxidizer via the inner wall; flowing a first flow of fuel to the captured flow of oxidizer; producing a rotating detonation gases via a mixture of the first flow of fuel and the captured flow of oxidizer; flowing at least a portion of the detonation gases downstream to mix with the flow of oxidizer; flowing a second flow of fuel to the mixture of detonation gases and oxidizer; and burning the mixture of the second flow of fuel and the detonation gases/oxidizer mixture.
    Type: Application
    Filed: February 26, 2018
    Publication date: August 29, 2019
    Inventors: Sibtosh Pal, Steven Clayton Vise, Arthur Wesley Johnson, Clayton Stuart Cooper, Joseph Zelina
  • Publication number: 20190249874
    Abstract: A gas turbine engine combustor includes a liner defining at least in part a combustion chamber, a first side exposed to the combustion chamber, a second side opposite the first side, and a dilution hole extending from the second side to the first side. The liner includes an airflow feature on the first side of the liner adjacent to the dilution hole and extending into the combustion chamber to increase a cooling of the liner.
    Type: Application
    Filed: February 14, 2018
    Publication date: August 15, 2019
    Inventors: Gurunath Gandikota, Hiranya Kumar Nath, Arvind Kumar Rao, Steven Clayton Vise, Perumallu Vukanti, Mayank Krisna Amble, Clayton Stuart Cooper
  • Publication number: 20190242582
    Abstract: A rotating detonation combustion (RDC) system including a detonation chamber wall extended along a longitudinal direction. The detonation chamber wall defines a detonation chamber radially in between the detonation chamber walls. The RDC system further includes a fuel-oxidizer nozzle defining a first convergent-divergent nozzle disposed upstream of the detonation chamber, and a gas nozzle defining a second convergent-divergent nozzle extended through the detonation chamber wall at least partially along the longitudinal direction. The gas nozzle provides a flow of gas into the detonation chamber at least partially co-directional to the detonation chamber wall.
    Type: Application
    Filed: February 7, 2018
    Publication date: August 8, 2019
    Inventors: Arthur Wesley Johnson, Steven Clayton Vise, Clayton Stuart Cooper, Joseph Zelina, Sibtosh Pal
  • Publication number: 20190162413
    Abstract: A combustor liner, a gas turbine engine including a combustor having the combustor liner, and a method for regulating jet wakes in the combustor are disclosed. The combustor liner includes a panel, at least one first through-hole, and a plurality of second through-holes including first and second set of through-holes. The at least one first through-hole is disposed on a section of the panel in a first row. The plurality of second through-holes is disposed on the section along axial and circumferential directions and arranged adjacent to the at least one first through-hole. The first set and the second set of through-holes are arranged in a second row and a third row respectively. The first, second, and third rows extend along the circumferential direction. The at least one first through-hole and the plurality of second through-holes collectively cover circumferential plane of the section along the first, second, and third rows.
    Type: Application
    Filed: November 28, 2017
    Publication date: May 30, 2019
    Inventors: Mayank Krisna Amble, Perumallu Vukanti, Steven Clayton Vise, Michael Anthony Benjamin
  • Publication number: 20190101062
    Abstract: A system and method for operating a combustion system comprising a fuel nozzle defining at least one main fuel circuit and at least one pilot fuel circuit is generally provided. The method includes determining an overall flow of fuel, the overall flow of fuel defining a sum total fuel through the main fuel circuit and the pilot fuel circuit; determining a plurality of ranges of ratios of main fuel flow through the main fuel circuit versus pilot fuel flow through the pilot circuit from the overall flow of fuel, wherein each range of ratios is based on a combustion criterion different from one another; determining a resultant range of ratios of main fuel flow versus pilot fuel flow based on a hierarchy of combustion criteria, wherein the hierarchy of combustion criteria provides a priority ranking of the combustion criterion; and flowing the overall flow of fuel to the main fuel circuit and the pilot fuel circuit based on the resultant range of ratios of main fuel flow versus pilot fuel flow.
    Type: Application
    Filed: October 3, 2017
    Publication date: April 4, 2019
    Inventors: Steven Clayton Vise, Duane Douglas Thomsen, Richard Wade Stickles, Clayton Stuart Cooper, Donald Lee Gardner, George ChiaChun Hsiao, Michael Anthony Benjamin, Shai Birmaher
  • Publication number: 20190085767
    Abstract: An apparatus and method for a combustor, the combustor including combustor liner having a plurality of dilution openings. The combustor receives a flow of fuel that is ignited and mixed with dilution air to form a flow of combustion gases. The flow of combustion gases travels through the combustor to a turbine section of an engine.
    Type: Application
    Filed: September 15, 2017
    Publication date: March 21, 2019
    Inventors: Steven Clayton Vise, Allen Michael Danis, Jayanth Sekar, Pradeep Naik, Perumallu Vukanti, Arthur Wesley Johnson, Clayton Stuart Cooper, Karthikeyan Sampath
  • Publication number: 20180363555
    Abstract: The present disclosure is directed to a propulsion system including an annular inner wall and an annular outer wall, a nozzle assembly, a turbine nozzle, and an inner casing and an outer casing. The inner wall and outer wall together extend at least partially along a longitudinal direction and together define a combustion chamber inlet, a combustion chamber outlet, and a combustion chamber therebetween. The nozzle assembly is disposed at the combustion inlet and provides a mixture of fuel and oxidizer to the combustion chamber. The turbine nozzle defines a plurality of airfoils in adjacent circumferential arrangement disposed at the combustion chamber outlet. The turbine nozzle is coupled to the outer wall and the inner wall. The inner casing is disposed inward of the inner wall and the outer casing is disposed outward of the outer wall. Each of the inner casing and the outer casing are coupled to the turbine nozzle.
    Type: Application
    Filed: June 15, 2017
    Publication date: December 20, 2018
    Inventors: Joseph Zelina, Sibtosh Pal, Arthur Wesley Johnson, Clayton Stuart Cooper, Steven Clayton Vise
  • Publication number: 20180356096
    Abstract: A method and system of effervescent atomization of liquid fuel for a rotating detonation combustor (RDC) for a propulsion system is provided. The method includes flowing liquid fuel through a fuel injection port of a nozzle assembly of the RDC system; flowing a gas through the fuel injection port of the nozzle assembly volumetrically proportional to the liquid fuel; producing a gas-liquid fuel mixture at the fuel injection port by mixing the flow of gas and the flow of liquid fuel; flowing an oxidizer through a nozzle flowpath of the RDC system; producing an oxidizer-gas-liquid fuel mixture by mixing the gas-liquid fuel mixture and the flow of oxidizer within the nozzle flowpath; and igniting the oxidizer-gas-liquid fuel mixture within a combustion chamber of the RDC system.
    Type: Application
    Filed: June 9, 2017
    Publication date: December 13, 2018
    Inventors: Sibtosh Pal, Joseph Zelina, Arthur Wesley Johnson, Clayton Stuart Cooper, Steven Clayton Vise
  • Publication number: 20180355793
    Abstract: A hybrid combustion system, and method of operation, for a propulsion system is provided. The hybrid combustion system defines a radial direction, a circumferential direction, and a longitudinal centerline in common with the propulsion system extended along a longitudinal direction. The hybrid combustion system includes a rotating detonation combustion (RDC) system comprising an annular outer wall and an annular inner wall each generally concentric to the longitudinal centerline and together defining a RDC chamber and a RDC inlet, the RDC system further comprising a nozzle located at the RDC inlet defined by a nozzle wall. The nozzle defines a lengthwise direction extended between a nozzle inlet and a nozzle outlet along the lengthwise direction, and the nozzle inlet is configured to receive a flow of oxidizer. The nozzle further defines a throat between the nozzle inlet and the nozzle outlet, and wherein the nozzle defines a converging-diverging nozzle.
    Type: Application
    Filed: June 9, 2017
    Publication date: December 13, 2018
    Inventors: Steven Clayton Vise, Joseph Zelina, Arthur Wesley Johnson, Clayton Stuart Cooper, Sibtosh Pal
  • Publication number: 20180355795
    Abstract: The present disclosure is directed to a rotating detonation combustion system for a propulsion system, the rotating detonation combustion system defining a radial direction, a circumferential direction, and a longitudinal centerline in common with the propulsion system extended along a longitudinal direction.
    Type: Application
    Filed: June 9, 2017
    Publication date: December 13, 2018
    Inventors: Sibtosh Pal, Joseph Zelina, Arthur Wesley Johnson, Clayton Stuart Cooper, Steven Clayton Vise
  • Publication number: 20180356093
    Abstract: The present disclosure is directed to a method of operating a propulsion system including a rotating detonation combustion (RDC) system. The RDC system defines a combustion inlet at an upstream end, a combustion outlet at a downstream end, a combustion chamber therebetween, and a nozzle defined at the combustion inlet upstream of the combustion chamber, and a secondary flowpath extended from upstream of the nozzle to downstream of the nozzle.
    Type: Application
    Filed: June 9, 2017
    Publication date: December 13, 2018
    Inventors: Sibtosh Pal, Joseph Zelina, Arthur Wesley Johnson, Clayton Stuart Cooper, Steven Clayton Vise
  • Publication number: 20180356099
    Abstract: The present disclosure is directed to a propulsion system including a rotating detonation combustion (RDC) system defining a plurality of fuel-oxidizer mixing nozzles each defined by a converging-diverging nozzle wall defining a nozzle flowpath. The nozzle wall defines a throat and a lengthwise direction extended between a nozzle inlet and nozzle outlet along the lengthwise direction. The longitudinal centerline of the propulsion system and the radial direction together define a reference plane, and the lengthwise direction of the nozzle intersects the reference plane and defines a nozzle angle greater than zero degrees and approximately 80 degrees or less relative to the reference plane.
    Type: Application
    Filed: June 9, 2017
    Publication date: December 13, 2018
    Inventors: Joseph Zelina, Sibtosh Pal, Arthur Wesley Johnson, Clayton Stuart Cooper, Steven Clayton Vise
  • Publication number: 20180355792
    Abstract: The present disclosure is directed to a rotating detonation combustion system for a propulsion system, the rotating detonation combustion system defining a radial direction, a circumferential direction, and a longitudinal centerline in common with the propulsion system extended along a longitudinal direction. The rotating detonation combustion system includes an annular outer wall and an annular inner wall each generally concentric to the longitudinal centerline and together defining at least in part a combustion chamber and a combustion chamber inlet. The outer wall and the inner wall together define an annular nozzle concentric to the longitudinal centerline at the combustion chamber inlet. The nozzle defines a lengthwise direction and extending between a nozzle inlet and a nozzle outlet along the lengthwise direction, the nozzle inlet configured to receive a flow of oxidizer. The nozzle further defines a throat between the nozzle inlet and nozzle outlet.
    Type: Application
    Filed: June 9, 2017
    Publication date: December 13, 2018
    Inventors: Sibtosh Pal, Joseph Zelina, Arthur Wesley Johnson, Clayton Stuart Cooper, Steven Clayton Vise