Patents by Inventor Steven D. Burch

Steven D. Burch has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20040177554
    Abstract: A heat exchanger (60) for a fuel processing system (10) that produces a hydrogen reformate gas. The heat exchanger (60) includes a catalyst for converting carbon monoxide to carbon dioxide. The heat exchanger (60) can be any suitable heat exchanger, such as a tube and fin type heat exchanger, that is able to cool the reformate gas and includes a suitable surface on which the catalyst can be mounted. In one embodiment, the heat exchanger (60) is part of a WGS reactor assembly (48). The WGS reactor assembly (48) includes a first stage WGS adiabatic reactor (52) followed by the catalyzed heat exchanger (60) and a second stage WGS adiabatic reactor (68). Also, in one embodiment, both the first stage and the second stage WGS reactors (52, 68) are medium temperature reactors. By catalyzing the heat exchanger (60) in the WGS reactor assembly (48), the assembly (48) can be smaller than what is currently known in the art.
    Type: Application
    Filed: January 31, 2003
    Publication date: September 16, 2004
    Inventors: Paul Taichiang Yu, Steven D. Burch, John C. Fagley, Annette M. Brenner, Reena L. Datta
  • Publication number: 20040154222
    Abstract: A primary reactor for a fuel processor system that employs steam and air to convert a liquid hydrocarbon fuel into a hydrogen-rich gas stream. The liquid fuel and an air-steam mixture are mixed in a mixing region within the reactor. The fuel mixture is then directed through an electrically heated catalyst region that heats the mixture to the operation temperature of a light-off catalyst at system start-up. The heated fuel mixture is then directed through a light-off catalyst monolith where the hydrocarbon fuel is dissociated. Once the fuel mixture is heated to the operating temperature of the light-off catalyst, the electrically heated catalyst region is turned off because the exothermic reaction in the light-off catalyst monolith generates the heat necessary to sustain the catalytic reaction.
    Type: Application
    Filed: February 7, 2003
    Publication date: August 12, 2004
    Inventors: Steven D. Burch, William H. Pettit, Steven G. Goebel
  • Publication number: 20040151958
    Abstract: A fuel cell system that employs a recuperative heat exchanger to provide additional cooling for the compressed charge air applied to the cathodes of the fuel cells in the fuel cell stack. The cathode exhaust gas is applied to the recuperative heat exchanger so that the cathode exhaust gas cools the charge air heated by the compressed air. A cathode exhaust gas expander is provided in combination with the recuperative heat exchanger that uses the energy in the heated cathode exhaust gas to power the charge air compressor. An anode exhaust gas combustor can be provided that burns residual hydrogen in the anode exhaust gas to further heat the cathode exhaust gas before it is applied to the expander.
    Type: Application
    Filed: January 31, 2003
    Publication date: August 5, 2004
    Inventors: Volker Formanski, Thomas Herbig, George R. Woody, John P. Salvador, Steven D. Burch, Uwe Hannesen
  • Publication number: 20040151959
    Abstract: A fuel cell system that employs a recuperative heat exchanger to provide additional cooling for the compressed charge air applied to the cathodes of the fuel cells in the fuel cell stack. The cathode exhaust gas is applied to the recuperative heat exchanger so that the cathode exhaust gas cools the charge air heated by the compressed air. A cathode exhaust gas expander is provided in combination with the recuperative heat exchanger that uses the energy in the heated cathode exhaust gas to power the charge air compressor. An anode exhaust gas combustor can be provided that burns residual hydrogen in the anode exhaust gas to further heat the cathode exhaust gas before it is applied to the expander.
    Type: Application
    Filed: October 29, 2003
    Publication date: August 5, 2004
    Inventors: Volker Formanski, Thomas Herbig, George R. Woody, John P. Salvador, Steven D. Burch, Uwe Hannesen
  • Publication number: 20040148862
    Abstract: A heat exchanger (60) for a fuel processing system (10) that produces a hydrogen reformate gas. The heat exchanger (60) includes a catalyst for converting carbon monoxide to carbon dioxide. The heat exchanger (60) can be any suitable heat exchanger, such as a tube and fin type heat exchanger, that is able to cool the reformate gas and includes a suitable surface on which the catalyst can be coated. In one embodiment, the heat exchanger (60) is part of a WGS reactor assembly (48). The WGS reactor assembly (48) includes a first stage WGS adiabatic reactor (52) followed by the catalyzed heat exchanger (60) and a second stage WGS adiabatic reactor (68). Also, in one embodiment, both the first stage and the second stage WGS reactors (52, 68) are medium temperature reactors. By catalyzing the heat exchanger (60) in the WGS reactor assembly (48), the assembly (48) can be smaller than what is currently known in the art.
    Type: Application
    Filed: September 17, 2003
    Publication date: August 5, 2004
    Inventors: Paul Taichiang Yu, Steven D. Burch, John C. Fagley, Annette M. Brenner, Reena L. Datta
  • Publication number: 20040101750
    Abstract: A set of fuel cell system heat exchangers that have been modified to incorporate thermal-to-electric devices is disclosed. These devices convert a portion of the thermal energy flowing through each heat exchanger to electric energy. Methods for operating the fuel cell system are also disclosed.
    Type: Application
    Filed: December 9, 2002
    Publication date: May 27, 2004
    Inventor: Steven D. Burch
  • Patent number: 6709780
    Abstract: A control system controls steam in a fuel cell system including a fuel processor. A fuel cell has run, standby and shutdown operating modes. A fuel processor provides reformate to the fuel cell. A pressure sensor generates a pressure signal based on a pressure of steam supplied to the fuel processor. A valve directs steam to or vents steam away from the fuel processor. A controller communicates with the pressure sensor, the fuel cell and the valve and controls the valve based on the operating mode of the fuel cell and the pressure signal. The controller opens the valve during the shutdown mode. The controller closes the valve during the run operating mode. The controller initially closes the valve during the standby mode. The controller opens the valve if the pressure signal exceeds a first predetermined pressure value and closes the valve when the pressure falls.
    Type: Grant
    Filed: April 30, 2002
    Date of Patent: March 23, 2004
    Assignee: General Motors Corporation
    Inventors: Donald H. Keskula, Bruce J. Clingerman, Steven D. Burch, Paul T. Yu
  • Publication number: 20040018403
    Abstract: A heat exchanger design is provided for optimal transfer of thermal energy between a primary reactor-out reformate and a primary reactor-in steam and air. In particular, one embodiment of the present invention comprises a prime-surface true counterflow heat exchanger positioned around the primary reactor. It is emphasized that this abstract is provided to comply with the rules requiring an abstract, which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that is will not be used to interpret or limit the scope or meaning of the claims. 37 CFR 1.72(b).
    Type: Application
    Filed: July 25, 2002
    Publication date: January 29, 2004
    Inventors: Steven D. Burch, Matthew J. Beutel, Kevin Stukey
  • Publication number: 20030203256
    Abstract: A control system controls steam in a fuel cell system including a fuel processor. A fuel cell has run, standby and shutdown operating modes. A fuel processor provides reformate to the fuel cell. A pressure sensor generates a pressure signal based on a pressure of steam supplied to the fuel processor. A valve directs steam to or vents steam away from the fuel processor. A controller communicates with the pressure sensor, the fuel cell and the valve and controls the valve based on the operating mode of the fuel cell and the pressure signal. The controller opens the valve during the shutdown mode. The controller closes the valve during the run operating mode. The controller initially closes the valve during the standby mode. The controller opens the valve if the pressure signal exceeds a first predetermined pressure value and closes the valve when the pressure falls.
    Type: Application
    Filed: April 30, 2002
    Publication date: October 30, 2003
    Inventors: Donald H. Keskula, Bruce J. Clingerman, Steven D. Burch, Paul T. Yu
  • Publication number: 20030203250
    Abstract: A method for designing a fuel processor having an optimized size (i.e., volume and mass) for use in a fuel cell system which provides electrical power in a plurality of power ranges. The method includes maximizing water availability in the fuel cell system and sizing the first CO reduction reactor to provide for peak fuel cell system operational efficiency in a most-used power range while sizing the second CO reduction reactor to ensure the fuel processor can components to operate at a desired maximum power. The method allows development of a fuel processor that has significantly lower total mass and volume, and shorter start-up time, than conventionally designed processors, yet can perform at a desired maximum power.
    Type: Application
    Filed: April 26, 2002
    Publication date: October 30, 2003
    Inventors: Steven D. Burch, William H. Pettit
  • Patent number: 6615872
    Abstract: A flow translocator disposed within a conduit for transferring and separating laminar fluid flow during translocation of the fluid core to the outer perimeter of the conduit and the outer perimeter flow to the center of the conduit. The flow translocator includes a disk disposed transverse the length of a conduit and having an outer profile conforming to the inner profile of a conduit to form a sealed fit. Arrays of slots extend about the disk for simultaneously directing the fluid core to the inner profile of a conduit and the outer perimeter flow toward the fluid core. The slots are staggered to maintain separation of the fluid core and the outer perimeter fluid during translocation.
    Type: Grant
    Filed: July 3, 2001
    Date of Patent: September 9, 2003
    Assignee: General Motors Corporation
    Inventors: Steven G. Goebel, Steven D. Burch, Thomas P. Migliore
  • Publication number: 20030129108
    Abstract: An improved fuel processor thermal management system for use with a fuel cell is disclosed. The process includes supplying an air stream and a fuel stream into a auto thermal reactor (ATR) and forming reformate gas therein. Then, preferentially oxidizing the reformate gas and the air stream in the preferential oxidizer reactor (PrOx). The temperature of the preferential oxidizer reaction is controlled with a water stream by vaporizing the water stream to form a first portion of vaporized water. Then, reacting the air stream with the reformate gas exiting the PrOx is reached in a fuel cell to form an anode exhaust stream which is subsequently combined with the air stream to heat the water stream to form a second portion of vaporized water. The first portion of vaporized water and the second portion of vaporized water form a steam fluid.
    Type: Application
    Filed: January 10, 2002
    Publication date: July 10, 2003
    Inventors: Steven D. Burch, Steven G. Goebel, William H. Pettit
  • Publication number: 20030093950
    Abstract: A fuel processor for rapid start and operational control. The fuel processor includes a reformer, a shift reactor, and a preferential oxidation reactor for deriving hydrogen for use in creating electricity in a plurality of H2—O2 fuel cells. A heating and cooling mechanism is coupled to at least the shift reactor for controlling the critical temperature operation of the shift reactor without the need for a separate cooling loop. This heating and cooling mechanism produces or removes thermal energy as a product of the temperature of the combustion of air and fuel. Anode effluent and cathode effluent or air are used to control the temperature output of the heating mechanism. A vaporizer is provided that heats the PrOx reactor to operating temperature.
    Type: Application
    Filed: November 19, 2001
    Publication date: May 22, 2003
    Inventors: Steven G. Goebel, William H. Pettit, Steven D. Burch, Paul T. Yu, Yan Zhang, Michael D. Cartwright
  • Patent number: 6544494
    Abstract: Method of operating an autothermal reformer (ATR) to produce a high temperature reformate including preheating steam and air inputs to the ATR with heat from the reformate. The steam is heated by the reformate, and the air is then heated by the steam. There is no direct heat exchange between the reformate and the air. In the heat exchangers effecting the heat transfer, the steam is kept at a higher pressure that both the reformate and the air.
    Type: Grant
    Filed: May 14, 2001
    Date of Patent: April 8, 2003
    Assignee: General Motors Corporation
    Inventors: Steven G. Goebel, Steven D. Burch, William Henry Pettit
  • Publication number: 20030007419
    Abstract: A flow translocator disposed within a conduit for transferring and separating laminar fluid flow during translocation of the fluid core to the outer perimeter of the conduit and the outer perimeter flow to the center of the conduit. The flow translocator includes a disk disposed transverse the length of a conduit and having an outer profile conforming to the inner profile of a conduit to form a sealed fit. Arrays of slots extend about the disk for simultaneously directing the fluid core to the inner profile of a conduit and the outer perimeter flow toward the fluid core. The slots are staggered to maintain separation of the fluid core and the outer perimeter fluid during translocation.
    Type: Application
    Filed: July 3, 2001
    Publication date: January 9, 2003
    Inventors: Steven G. Goebel, Steven D. Burch, Thomas P. Migliore
  • Publication number: 20020168316
    Abstract: Method of operating an autothermal reformer (ATR) to produce a high temperature reformate including preheating steam and air inputs to the ATR with heat from the reformate. The steam is heated by the reformate, and the air is then heated by the steam. There is no direct heat exchange between the reformate and the air. In the heat exchangers effecting the heat transfer, the steam is kept at a higher pressure that both the reformate and the air.
    Type: Application
    Filed: May 14, 2001
    Publication date: November 14, 2002
    Inventors: Steven G. Goebel, Steven D. Burch, William Henry Pettit
  • Patent number: 5643485
    Abstract: A cooking utensil with improved heat retention includes an inner pot received within an outer pot and separated in a closely spaced-apart relationship to form a volume or chamber therebetween. The chamber is evacuated and sealed with foil leaves at the upper edges of the inner and outer pot. The vacuum created between the inner and outer pot, along with the minimum of thermal contact between the inner and outer pot, and the reduced radiative heat transfer due to low emissivity coatings on the inner and outer pot, provide for a highly insulated cooking utensil. Any combination of a plurality of mechanisms for selectively disabling and re-enabling the insulating properties of the pot are provided within the chamber.
    Type: Grant
    Filed: November 21, 1994
    Date of Patent: July 1, 1997
    Assignee: Midwest Research Institute
    Inventors: Thomas F. Potter, David K. Benson, Steven D. Burch